DOI QR코드

DOI QR Code

Laser Ablation법에 의한 ZrVFe 합금 나노분말 제조

Preparation of ZrVFe Nano Powders by Laser Ablation

  • 길대섭 (한국지질자원연구원 자원활용소재연구부) ;
  • 서용재 (한국지질자원연구원 자원활용소재연구부) ;
  • 장희동 (한국지질자원연구원 자원활용소재연구부) ;
  • 이재천 (한국지질자원연구원 자원활용소재연구부) ;
  • 송창빈 (공주대학교 신소재공학부) ;
  • 김원백 (한국지질자원연구원 자원활용소재연구부)
  • Kil Daesup (Korea Institute of Geoscience and Mineral Resources) ;
  • Suh Yongjae (Korea Institute of Geoscience and Mineral Resources) ;
  • Jang Heedong (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee Jaechen (Korea Institute of Geoscience and Mineral Resources) ;
  • Song Changbin (Division of Advanced Materials Engineering, Kongju National University) ;
  • Kim Wonbaek (Division of Advanced Materials Engineering, Kongju National University)
  • 발행 : 2005.04.01

초록

Nano-sized ZrVFe alloy powders were prepared by the ablation of powder compact in alcobol using a Nd-YAG pulsed Laser. The $Zr_{57}V_{35.}8Fe_{7.2}$ alloy commercially designated as ST707 has long been known as the ideal solution for various vacuum applications. The target for the ablation was sintered pellets of $Zr_{57}V_{35.}8Fe_{7.2}$ alloy powder. The alloy was prepared by arc melting and Hydride-DeHydride method. The ablated powders were mostly circular having fairly large size distribution smaller than 200 nm in all cases. The X-ray diffraction study revealed that the ablated alloy retained the crystal structure of the target alloy. Nevertheless, Fe and V contents in the ablated powder were lower than those in the target alloy. This was believed to result from the high vapour pressures of Fe and V compared to that of Zr. The size of the powders ablated at high energy fluence tends to decrease due at least partly to the breakdown of previously made ones.

키워드

참고문헌

  1. S. Luby, E. Majkova, E. Illekova, R. Sandrik, E. D'Anna, A. Luches, A. Perrone and S. Enzo, Thin Solid Films, 261, 154 (1995) https://doi.org/10.1016/S0040-6090(95)06534-2
  2. A. Takami, H. Kurita and S. Koda, J. Phys. Chem. B, 103, 1226 (1999) https://doi.org/10.1021/jp983503o
  3. S. Link, C. Burda, B. Nikoobakht and M. A. EL-Sayed, J. Phys. Chem. B, 104, 6152 (2000) https://doi.org/10.1021/jp000679t
  4. J. G Lunney, Applied surface Sciences, 86, 79 (1995) https://doi.org/10.1016/0169-4332(94)00368-8
  5. H. U. Krebs, S. Fahler and O. Bremert, Applied surface Sciences, 86, 86 (1995) https://doi.org/10.1016/0169-4332(94)00377-7
  6. L. D'Alessio, D. Ferro, R. Teghil and G. DeMaria, J. Alloy and Compounds., 247, 250 (1997) https://doi.org/10.1016/S0925-8388(96)02657-6
  7. T. Sasaki, S. Terauchi, N. Koshizaki and H. Umehara, Applied Surface Science, 127-129, 398 (1998) https://doi.org/10.1016/S0169-4332(97)00663-6
  8. M. F. Becker, J. R. Brock, H. Cai, D. E. Henneki, J. W. Keto, J. Y. Lee, W. T. Nichols and H. D. Glicksman, Nanostructured Materials, 10, 853 (1998) https://doi.org/10.1016/S0965-9773(98)00121-4
  9. D. Jang and D. Kim, Applied Physics A, (2003)
  10. R. Teghil, L. D'Alessio, V. Marotta, A. Santagata, G. De Maria, D. Ferro and M. A. Sansone, Applied Surface Science, 119, 34 (1997) https://doi.org/10.1016/S0169-4332(97)00170-0
  11. Q. V. Simakin, V. V. Voronov, G. A. Shafeev, R. Brayner and F. Bozon-Verduraz, Chemical Physics Letter, 248, 182 (2001) https://doi.org/10.1016/S0009-2614(01)01136-8
  12. T. Tsuji, K. Iryo, N. Watanabe and M. Tsuji, Applied Surface Science, 202, 80 (2002) https://doi.org/10.1016/S0169-4332(02)00936-4
  13. A. Pyatenko, K. Shimokawa, M. Yamaguchi, O. Nishimura and M. Suzuki, Applied Physics A, 79, 803 (2004) https://doi.org/10.1007/s00339-004-2841-5
  14. G. X. Chen, M. H. Hong, B. Lan, Z. B. Wang, Y. F.Lu and T. C. Chong, Applied Surface Science, 228, 169 (2004) https://doi.org/10.1016/j.apsusc.2004.01.007
  15. S. I. Dolgaev, A. V. Simakin, V. V. Voronov, G. A. Shafeev and F. Bozon-Verduraz, Applied Surface Science, 186, 546 (2002) https://doi.org/10.1016/S0169-4332(01)00634-1
  16. A. V. Simakin, V. V. Voronov, N. A. Kirichenko and G. A. Shafeev, Applied Physics A, 79, 1127 (2004) https://doi.org/10.1007/s00339-004-2660-8