DOI QR코드

DOI QR Code

Formation of an Aluminum Hydroxide Fiber by a Hydrolysis of Aluminum Nano Powder

알루미늄 나노 분말의 수화반응에 의한 수산화알루미늄 형성

  • Lee Geunhee (Korea Atomic Energy Research Institute, Dept. Nuclear Materials Development and Technology) ;
  • Oh Young Hwa (Korea Atomic Energy Research Institute, Dept. Nuclear Materials Development and Technology) ;
  • Rhee Chang Kyu (Korea Atomic Energy Research Institute, Dept. Nuclear Materials Development and Technology) ;
  • Kim Whung Whoe (Korea Atomic Energy Research Institute, Dept. Nuclear Materials Development and Technology)
  • 이근희 (한국원자력연구소 원자력재료기술개발부) ;
  • 오영화 (한국원자력연구소 원자력재료기술개발부) ;
  • 이창규 (한국원자력연구소 원자력재료기술개발부) ;
  • 김흥회 (한국원자력연구소 원자력재료기술개발부)
  • Published : 2005.03.01

Abstract

Formation of aluminum hydroxide by a hydrolytic reaction of nano aluminum powder synthesized by a pulsed wire evaporation (PWE) method has been studied. The type and morphology of the hydroxides were investigated with various initial temperatures and pHs. The nano fibrous boehmite (AlOOH) was formed predominantly over $40^{\circ}C$ of the hydrolytic temperature in acid solution, while the bayerite $(Al(OH)_3)$ was formed predominantly below $30^{\circ}C$ in alkali solution with a faceted crystalline structure. As a result the boehmite showed a much larger specific surface area (SSA) than that of bayerite. The highest SSA of the boehmite was about $409\;m^2/g$.

Keywords

References

  1. J. Bugosh, J. Phys. Chem., 65, 1789 (1961) https://doi.org/10.1021/j100827a024
  2. V. N. Kurlov, V. M. Kiiko, A. A. Kolchin and S. T. Mileiko, J. Cryst. Growth, 204, 499 (1999) https://doi.org/10.1016/S0022-0248(99)00213-4
  3. R. Greenwood, K. Kendall and O. Bellon, J. Eur. Ceram. Soc., 21, 507 (2001) https://doi.org/10.1016/S0955-2219(00)00234-X
  4. T. S. Kannan, P. K. Panda and V. A. Jaleel, J. Mater. Sci. Lett., 16, 830 (1997) https://doi.org/10.1023/A:1018538727137
  5. S. Music, D. Dragcevic and S. Popovic, Mater. Lett., 40, 269 (1999) https://doi.org/10.1016/S0167-577X(99)00088-9
  6. M. P. B. Van Brudden, Langmuir, 14, 2245 (1998) https://doi.org/10.1021/la971175y
  7. E. Morgado Jr., Y. L. Lam and F. L. Nazar, J. Colloid and Interface Sci., 188, 257 (1997) https://doi.org/10.1006/jcis.1997.4780
  8. E. Yoldas, J. appl. Chem. Biotechnol., 23, 803 (1973) https://doi.org/10.1002/jctb.5020231103
  9. J. H. Park, M. K. Lee, C. K. Rhee and W. W. Kim, Mat. Sci. Eng. A, 375-377, 1263 (2004) https://doi.org/10.1016/j.msea.2003.10.155
  10. F. Xu, X. Zhang, Y. Xie, X. Tian and Y. Li, J. Colloid and Interface Sci., 260, 160 (2003) https://doi.org/10.1016/S0021-9797(02)00138-8
  11. C. Sudakar, G. N. Subbanna and T. R. N. Kutty, J. Phys. Chem. Solids, 64, 2337 (2003) https://doi.org/10.1016/S0022-3697(03)00270-1
  12. G. H. Lee, J. H. Park, C. K. Rhee and W. W. Kim, J. Ind. Eng. Chem., 9, 71 (2003)
  13. Joint Committee on Powder Diffraction Standard (JCPDS), International Centre of Diffraction Data(ICDD), Swathomore, PA, No.20-0011, No.21-1307 (1995)
  14. C. H. P. Lupis, Chemical Thermodynamics of Materials, p.512, Prentice hall, New York, (1993)
  15. G. C. Bye and J. Robbinson, Kolloid-Z. Z. Polymere, 198, 53 (1964) https://doi.org/10.1007/BF01499454
  16. W. Mista and J. Wrzyszcz, Thermochim. Acta, 331, 67 (1999) https://doi.org/10.1016/S0040-6031(99)00052-0