DOI QR코드

DOI QR Code

전단이 지배하는RC 부재의 새로운 트러스 모델링 기법 연구 (후편) - 검증을 중심으로 -

A New Refined Truss Modeling for Shear-Critical RC Members (Pert II) - lts Verification -

  • 김우 (전남대학교 토목공학과) ;
  • 정제평 (전남대학교 토목공학과) ;
  • 김행준 (목포과학대학 토목과)
  • Kim Woo (Dept. of Civil Engineering, Chonnam National University) ;
  • Jeong Jae-Pyong (Dept. of Civil Engineering, Chonnam National University) ;
  • Kim Haeng-Joon (Dept. of Civil Engineering, Mokpo Science College)
  • 발행 : 2005.02.01

초록

이 논문은 본 연구의 후반부로, 전편의 논문에서 개념적으로 유도하고 정식화한 새로운 트러스모델의 적용성 검증을 다룬것이다. 이 모델에는 처음으로 소개되는 아치계수-$\alpha$가 포함되어 있기 때문에 이 계수의 특성에 대해 고찰하였다. 계수-$\alpha$의 값은 a/d, $\rho$$\rho_v$에 따라 변하며, 주철근비가 커질수록 그리고 스터럽 비가 작아질수록 그 값은 증가하는 특성을 갖고 있다. 이렇게 정식화된 트러스모델을 단면법으로 변환하여 주철근과 복부철근의 응력 및 전단강도를 산정하는 식을 유도하였으며, 이 식을 기존 문헌에 발표된 실험자료에 적용하여 그 정확성을 검증하여 본 결과, 예측값은 실험값과 매우 근사하게 일치하는 것으로 나타났다.

This paper as Part II of the present study deals with the verification of the new truss model that has been conceptually derived and formulated in Part I. Since the model includes the arch coefficient-$\alpha$, the characteristics of this coefficient are examined, and it appears that the coefficient-$\alpha$ is a function of a/d, $\rho$ and $\rho_v$ After transforming the model Into a sectional approach, the formula for predicting the stirrup stress, the longitudinal steel force, and ultimate shear strength are derived. Then, the equations are applied to the test specimens available in literatures, and the predicted values are shown to be in excellent agreement with the experimental results.

키워드

참고문헌

  1. Leonhardt, F., 'Reducing the shear reinforcement in reinforced concrete beams and slabs,' Magazine of Concrete Research, Vol.17, No.53, 1965, pp.187-198 https://doi.org/10.1680/macr.1965.17.53.187
  2. Kim, D.-J., Kim, W., and White, R. N., 'Prediction of Reinforcement Tension Produced by Arch Action in RC Beams,' ASCE, Journal of Structural Engineering, Vol.124, No.6, 1998, pp.611-622 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(611)
  3. Kani, G. N. J., 'Basic Facts Concerning Shear Failure,' ACI Journal, Vol.63, No.3, 1966, pp.675-692
  4. Collins, M. P. and Mitchell, D., 'Prestressed Concrete Structures,' Prentice-Hall, Englewood Cliffs, N. J., 1991
  5. ASCE-ACI Committee 326, 'The Shear Strength of Reinforced Concrete Members,' Journal of Structural Division, ASCE, Vol.99, No.6, 1973, pp.1001-1187.
  6. Taylor, H P. J., 'The fundamental behavior cf reinforced concrete beams in bending and shear,' ACI SP-42, Detroit, M. I., 1974, pp.43-77
  7. ASCE-ACI Committee 445, 'Recent approaches to shear design of structural concrete,' Journal of Structural Engineering, ASCE, Vol.124, No.5, 1998, pp.1375-1417 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375)
  8. Walraven, J., Frenay, J., and Pruijssers, A., 'Influence of Concrete Strength and Load History on the Shear Friction Capacity of Concrete Members,' PCI Journal, Vol.32, No.1, 1987, pp.66-84
  9. Bhide, S. B. and Collins, M. P., 'Influence of axial tension on the shear capacity of reinforced concrete members,' ACI Structural Journal, Vol.86, No.5, 1989, pp. 551-564
  10. ACI Committee 318, 'Building Code Requirement for Reinforced Concrete and Cornrneniary,' ACI, Detroit, MI, 1995
  11. AASHTO LRFD, 'Bridge Design Specificaion and Commentary,' First Edition, American Association of State Highway and Transportation Officials, Washington, D.C, 1994, 1091pp