Abstract
If ${\beta}\;>\;1$, then every non-negative number x has a ${\beta}-expansion$, i.e., $$x\;=\;{\epsilon}_0(x)\;+\;{\frac{\epsilon_1(x)}{\beta}}\;+\;{\frac{\epsilon_2(x)}{\beta}}\;+\;{\cdots}$$ where ${\epsilon}_0(x)\;=\;[x],\;{\epsilon}_1(x)\;=\;[\beta(x)],\;{\epsilon}_2(x)\;=\;[\beta(({\beta}x))]$, and so on ([x] denotes the integral part and (x) the fractional part of the real number x). Let T be a transformation on [0,1) defined by $x\;{\rightarrow}\;({\beta}x)$. It is well known that the relative frequency of $k\;{\in}\;\{0,\;1,\;{\cdots},\;[\beta]\}$ in ${\beta}-expansion$ of x is described by the T-invariant absolutely continuous measure ${\mu}_{\beta}$. In this paper, we show the mod M normality of the sequence $\{{\in}_n(x)\}$.