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NUMERICAL METHODS FOR SOME NONLINEAR STOCHASTIC
DIFFERENTIAL EQUATIONS

MAHMOUD M. EL-BORAI* KHAIRIA EL-SATD EL-NADI, OSAMA L. MOSTAFA, HAMDY M.
AHMED

ABSTRACT. In this paper we study the numerical solutions of the stochastic differ-
ential equations of the form

du(z,t) = f(z,t,u)dt+ g(z,t,u)dW(t) + > Ag(z,t)Dlu(,t)dt
lg|<2m
where 0 < ¢t < T,z € R”, (R” is the v—dimensional Euclidean space).
Here u € R™, W(t) is an n-dimensional Brownian motion,

f . Rn+u+1 = Rn,g . Rn+u+1 — Rnxn,

and
Ay RV x [0,T] —» R™™",

where (A,,| ¢ |< 2m) is a family of square matrices whose elements are suffi-
ciently smooth functions on R” x [0,7] and D? = D{*.....D¥, D; = a%i :
Keywords: Euler-Maruyama,stochastic differential equations, nonlinearity, mo-

ment bounds.
AMS Subject Classifications: 65¢30, 60H20

1. INTRODUCTION

Desmond J. Higam, X-Uerong Mao, and Andrew M. Stuart studied the numer-
ical solution of the stochastic differential equations of the form
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dy(t) = f(y(t))dt + g(y(t))dW (), where 0 < t < T, y(0) = yo,y(t) € R" for each
t and W () is an n-dimensional Brownian motion (see [9])

In this paper we study the numerical solutions of the stochastic differential equa-
tions of the form

du(z,t) = f(z,t,u)dt + g(z,t,u)dW(t) + Y Ag(z,t)Du(z, )dt  (L.1)
lgl<2m
where 0 <t<T,x € R".

Here u € R" and W(t) is an n-dimensional Brownian motion. It is supposed
that f: R***! —» R* | ¢g: R*v*! — R™*" where

(A2, 1), ] g |< 2m)

is a family of square matrices whose elements are sufficiently smooth functions
on R” x [0, T

0
oz,
q = (q1, .~-q,)is v-dimensional multi-index, (see [5]). Equation (1.1)is called par-
abolic in the region G = {(z,t);z € RY,t > 0} if for any point (z,t) € G the
real parts of the A-roots of the equation Det [(—~1)™ 3|, _om Aq¢(z, )07 — M| =0
satisfy the inequality Re)(z,t,0) < —§ | o |™ , where 4 is a positive constant,
o€ RY,

Dq = Dgl ..... D3V7 DZ =

16 |= (82 + ...+ 62)2,07 = 0¥ ...0%,

and [ is the unit matrix.

We suppose that the following conditions are satisfied:

1. The coefficients of the operator 3, <y, Aq(, ) D? are continuous in € (0,71,
moreover, the continuity in t of the coefficients 3, <5, 4q(2;, t) D7 is uniform with
respect to x € R”.

2. The coefficients of 3 5, A(z,t)D? are bounded on R” x [0,T] and satisfy
the Holder condition with respect to x.

Under these conditions there exists for the system

av
= D Az, t)DV (1.2)
lgl<2m :

a fundamental matrix of solution K (z,y,t,60) which satisfy the following condi-
tions
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(1)
%fti,DqK € C(Gy), | q|< 2m
where G; = R% x (0,T) x (0,T)

b z . . —b2lz— Zm
(2) | DIK (z,y,t,0) |< e it > 6,2 = halay T

B=1/2(v+ql),1¢l<2m
where | z | is the norm (22 + z% + ... + z2),| K | a suitable norm of the square

matrix K , b; and b, are positive constant.
(3) The function V defined by

Vie,t)= [ K(=z,y,t0)V(y)dy
Rl/
represents the unique solution of the parabolic system
v
= 'Z Ay(z,t) DV (1.3)
lgl<2m

with the initial conditions
V(z,0) = Vp(z) (1.4)

v
& DV € C(Ga), 1< 2m)
G, = RY x (0,T), (C(G)is the set of all continuous functions on G)

The existence of such functions depends on the parabolicity of the system (1.3)
and on the smoothness of the coefficients of such systems (see [1], [4]).
We shall use the notations

Slip | V(.’Ii,t) l:“ V(‘at) I,

sup | e(z,t) |=|| e(., 1) I
where
e(z,t) = V(z,t) — u(z,t).
We assume that f and g satisfy the Lipschitz condition.
|| f('7t’u) - f("t’,U) |I + H g("t’u) _g('7t?v) ”S 7 I u— v |’ (1'6)

we assume also that f and g satisfy the growth condition.

I FCt ) 1P+ 1 g tw) IP< 2+ L ), (1.7)
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where v > 0

The convergence theory for numerical methods were studied in many papers (see
[2], 13, 6], (8], [15], [10], [12], {13], [14]). In this paper we focus on the mean
square convergence, which implies convergence in probability. In section 2 we
prove that the Euler-Maruyama method converges strongly if the exact and nu-
merical solution have bounded pth moment for some p > 2.

In section 3 we prove that u (x, t) has bounded moments. In section 4 we show
that the Euler-Maruyama converges strongly at the optimal rate

2. SOME NUMERICAL METHODS

Given a step size At > 0, the Euler-Maruyama (EM) method applied to (1.1)
computes approximations

Vi(z) = ulz,ty), where  t; = kAt uo(z) = Vo(2),
Viri(@) = Vi(z) + Atf(z, t, Vi) + g(z, t, Vi) AW,
+At Y a,DW(x), (2.1)

lgi<2m

and AW, = W(tk.H) — W(tk).

In our analysis we find it convenient to work with continuous time approximations
and hence we define

V(z,t) by V(z,t) = Vi(z);t € [t, tr+1) and set

T
V(z,t) = K(w,y,t,O)%(y)dy+/ K(z,y,t,5)f(y,s,V(y,s))dyds
0 RY

RV

+ / K(z,y,t,5)9(y, s, V(y,s))dydW (s). (2.2)
o Jrr

Note that V(z,tx) = V(z,t) = Vi(z); that is V(z,t) and V(,t) coincide with
the discrete solution at the grid points.

We refer to V(x, t) and V(z,t) as continuous time extensions of the discrete
approximations {Vi(z)}. We will study the error in V(z,t) in the supremum
norm, this will, of course, give an immediate bound for the error in the discrete
approximation.

In this paper | . | is used to denote the Euclidean vector norm.
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Let us suppose for some p > 2 there is a constant B such that

Elsuwp | V(,1) 1)< B, E[suwp [ u(.1) ") < B (2:3)

Theorem 2.1. Under the conditions (1.6) and (2.3), for any T' > 0 the Euler-
Maruyama solution (2.1) with continuous time extension (2,2) satisfies
im E[ sup || V(0,t) —u(0,t) ||*) =0. (2.4)
<r

1
At—0 0<t

Proof.
Set

= inf{t > 04 V(,0) 1> B}, pr = inf{t > 0] u(, &) 1> R}, 0 = o A pr
(Tr A pr the minimum of 7 and pg)

Recall the Young inequality; ab < ga’ + q(;;,, b?,Va,b,d > 0 where % + % =1.
We thus have for any § > 0

B[ sup |l (1) 1% = E[ sup [l e(. 1) |2 rrsToonst]

+ E[sup | e, t) 3. <ror
ETNTETY m—

< E[sup | e(,tA8g) |} {0r>T}]
0<t<T

26
+ —E[sup | e(,1) "]
P o<t
_ 2
+m_i2)P(TR <Torpr<T). (2.5)

Now, by using (2.3)we get,
1 V(. r) H”]
Rp

1 —
< —E V(1) 1P < =,
<& [oi‘?%” GO < &

A similar results can be derived for pg, so that

P(TR < T) = E[l'rRST

2B
P <Tor pr < T) < &

Using these bounds along with

Ef sup |l e(-t) [F] < 2 sup (V) P+ N u(,t) P <2°B

sup
0<z<T
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and by substituting in (2.5), we get
E[sup |l e(.t) "] < E[sup [l (V(..tAbr) = u(,tAOR)] |I]
0<t<T 0<t<T

p+1 —
2P+16B z(p 2)B (2.6)
p ps?/(p-2)R?
By estimating the first term on the right of (2.6), we get

uw(z,t AfGg) = K(z,y,tA8g,0)uo(y)dy
RV

tAOp
[ [ Kyt 0 s)gly,s ) s (s 2.7)
0 R,
From (2.2) , (2.7) and by using Cauchy Schwartz inequality we get
| V(,tAOr) —u(.,tAbg) |

tA8R
< 20 / 0 £,V 8) = Fo sl 5)) [Plds

tAOR
+ /0 9,5,V (,5) = g(,s,ul,9) I dW(s) I} -
So, from (1.6) and Doob’s martingale inequality [12], we have for any 7 < T

E[sup || V(,tA8g)—u(.,tA08g) 1%

< 20m([ V) — o) P d
< el "NV =T ) I+ 1 V(s) = uleys) [Pds]
< aoml[ IV Vi) i

# [NV s n0m) = a5 0m) 7 ]

<ac@l [ V9 -V P dd

+/ E sup | V(,rAOr— V(7 Abg | ds). (2.8)
0

0<r<s
Let k. be the integer for which ¢ € [tk , ti,,,)-
Then :



SOME NONLINEAR STOCHASTIC DIFFERENTIAL EQUATIONS 85

V(.T,C) - ‘_/:(13, C) = ch(m) = . K(.’L‘, Y, 6 O)VkC(y)dy

- / [ Ko,V (0, 5)dyds
t v

_ /tc RuK(w,y,c,s)g(y,s,V(y,s))dydW(S)

= Vi(z) - . K(z,y,c,0)Vie(y)dy
— | K@y.e 0/, i@)C - @)y
— . K(.’E,y,C, O)Q(y,C, ch(y))(W(C) - W(tkC))dy

Hence

I V(o) = V(o) IP< 4] Vi) 1P 24 1 £ Vi) (17 (A1)
g e, Vi () IPI W () = W () 1I7].

From (1.7), (2.3) and Lyapunov inequality {11}, yields

TAOR
E/O | V() =V(,s) |7 ds

VAN

([ V) P+ 0o 1 Vi) 1807+ manys

IA

i© / 311 Vo () 1P + | Vi () [11((A1)2 + mAt)ds

ACT(BY* + BYP)At(At +m)
4ACTBYF At(At +m).

IA A

By substituting in (2.8) we have for a new constant C > 0

E[lsup || V(,tA8g) —u(,tABg) |

0<t<T

< CB““’At(At +m) —|—6/ E sup [|| V(.,r ANOr) —u(., 7 AOg 1*]ds
0

0<r<s
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Apply the Gronwal inequality we obtain

E sup || V(.,tAOg) —u(.,t AOg) |I2]

0<t<T

< C AtetCT

where C is a universal constant independent of At, R and §. Substituting in (2.6)
we obtain

2Pt16B N (p—2)2B
p*/(p-2)R

Given € > 0, we can choose 6 > 0 such that (2#*'6B)/p < §. Then choose

3
1-2 B
R so that (——/—2)—2— < <. and then choose At sufficiently small such that

E[sup | e(.,t) %] < CAte*°T +
0<t<T

i (652(1)—2) Rp 3’
CAte* < 3 we get,
Elsup |l e(,1) 7} <
0<t<T

as required.

3. BOUNDED MOMENTS

we show that the stochastic differential equation has bounded pth moment for
each p > 2.
Lemma 3.1. Under the conditions (1.6) and (1.7), for each p > 2, there is
C =C(p,T) > 0 such that

E[sup |l u(,t) ] <CA+E [[uo(.) [I”)
0<t<T
Proof.we have

U(l‘,t) = K(J;}yat’ O)UO(y)dy
RU

t
+ / K(z,y,t,5)f(y, s,u(y, s))dyds
0 Ry

t
+ / K (2.t 5)g(y, 5, u(y, 5))dyd¥ (5)
] RY
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By using (1.7) we have for some
v = v(p)and t, € [0, T

sup || u(.,t) [IP< C{|| wol) [I” +
0<t<t,

t1
A W fC s uls ) 1P+ 1 g( s ul5)) I1P1ds,
we take the expectation to give
t1
B(sup || u(.1) 7] S TLE | () P + / Ellu(,s) P ds}  (31)

since, we have

E(ll u(.,t) I} < C{E|| uo(-) II"] +/0 Efl u(., s) |IPlds}.
By using Gronwall lemma, we get :
Ef| u(., 1) [P} < E [ uo() [P €7, t € [0,14]

From the last inequality and (3.1), we get the required result.

4. CONVERGENCE RATE FOR EULER MARUYAMA

In this section we establish a rate of convergence for Euler-Maruyama. So let

us assume that the stochastic differential equation solutions and EM solutions
satisfy

E(sup |l u(.,t) ") < oo, E(sup || V(1) |IP) <oo
0<t<T 0<t<T

E(sup || V(.,t)|[P< oo, forall p>1 (4.1)
0<t<T
Throughout the following analysis z is a positive integer, whose value may change
between occurrences.
Before obtaining a convergence rate for EM, we give the following Lemma.

Lemma 4.1. Under condition (1.6) and (4.1), for any even integer 7 < 2, there
exists a constant k = k (r) such that

sup E | V(z,t) — V(z,t) "< kAt?

0<t<T
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Proof. Let t € [kAt, (k + 1)At). Then
| VL -V(.0 <ol / " Fs, V(. s)ds) |

0 [ gla VW@ I}

= C{lt =t "Il £ e, V() II”

+ 1 g( e, Vi) IMITW () = W) 117}
Hence, for some k = k(r)

E || V(1) =V(, 1) "< k(A 1+ Esupogier || V() 7]
+ [1+ Esupoceer | V(,0) 1t = t)7?),

for 0 <t <T. Since t — t;, < At , the result follows by redefinition of k .
Theorem 4.1.

Under the conditions (1.6) and (4.1) the Euler- Maruyama solution (2.1) with
continuous time extension (2.2) satisfies

E[sup | V(z,t) - u(z,1)) ] = O(A1))

0<t<T

Proof. We have (2.3) and

u(z,t) = " K(z,y,t,0)u(y)dy
b [ KG9 uls)duds
+ /Ot - K(z,y,t,5)9(y, s, uly, s))dydW (s)
let e(z,t) = u(z,t) — V, (z,t) ,then

I (1) 2< 204 / | F(osyu(s8) = F(o,V(s) | ds

+ /0 | g9(., s,u(.,s)) — g(.,s,V(.,s) “2 dS}
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s@%twu@—vu@Ww}

< ([ Nuto9) - Vo) 1 ds}
+ /0 IV(,s)— V(.,s) |? ds}

By using lemma (4.1) with r = 4 | we get :

Euwnawnm§cAEn4»wws

0<s<t

+/OtE(|| V(,s)=V(,s)||Y)z2ds

< C[/O E | e(.,s) |2 ds] + KAt

The result follows from Gronwal lemma .
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