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ASSET MODEL INVESTED BY SHORT-SAMPLING INTERVALS

JOE KELLEY AND JAE-PILL OH

ABSTRACT. We analyze some real data and, from the background of analysis of data,
we define a multi-dimensional jump-type asset model which is derived from short-
sampling asset prices. We study some basic properties of this asset model.

1. INTRODUCTION

The purpose of this paper is to introduce a new asset model which is derived from
the investigation of asset price movements by short-sampling intervals. We analyze
some real data by some computer programs and predict various types of asset models
by changing sampling time intervals. Thus, we define an asset model which is useful to
study short-term asset price movements, for example, intraday, half day, etc. For this
model, we study option pricing mainly.

Since the stock market was started in 1531, Antwerp, Belgium, many mathematical
asset model of stock markets was introduced for hundreds of years. The first attempt
known to model the stock market using probability is due to L. Bachelier in Paris
about 1900. His idea was developed by several persons(c.f. [3], [20]). A famous model
in mathematical finance, Black-Scholes model was studied by F. Black and M. Scholes
(1973) and R. Merton (1973). They used It6 stochastic calculus and Markov property
of diffusion in key ways even if their main result was option pricing. Development of
this area has been closely intertwined with that of the theory of stochastic integration.
Much has happened in the intervening two decades. This area has become a branch
of mathematics, and sometimes asset models are called financial models of stochas-
tic processes defined by stochastic differential equations(SDE) in probability theory.
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Nowadays, we have many kinds of asset models which are represented and defined by
the solution of SDE, and are distinguished as continuous-type, jump-type, etc.

Perhaps, some mathematicians who study mathematical finance may hope their re-
sults are used in real economic markets. But it is difficult to know the direct role of
asset models for real economic markets. Many economists also study many types of
asset models, for example, ARCH, GARCH, EWMA, EGARCH, etc., which are very
strange to some mathematicians. Further, also there are many strange terms, for exam-
ple, VaR, ISD, QMLE, NTM ATM, etc. In almost all of mathematical finance theory,
one assume an asset model first and study its property. We analyze real market data,
and make some tables and various types of figures. From these, we can predict many
types of models by changing sampling intervals. From the background of analysis of
data, we define an asset model by a SDE. Our analysis of data is not to prove our
model, but to help understanding it(c.f. [4], [19]). For example, we would like to follow
the development step of [16] than of [12].

From the analysis of data, we conclude it is possible to define a short-term asset model
from short time data because we can get much information by using short-sampling
time. Further, if we use the summation of return rates of another assets which are
adjusted by influence levels, we can get more stable and realistic asset model. Thus,
we define a short-term asset model as

m
(1) dX} = Xi_ > cd(t-) (W] +dM]), d<m, i=12--,d,
3=1

where aj-(t—) denotes the level of influence to the ith asset price at time ¢{— from the

jth source of uncertainty, WtJ is a Brownian motion, and Mt] is a jump-type martin-
gale. Another special quality of this model is not have deterministic term which is an
appreciation rate(c.f. [16]).

We define Q-price at time ¢t = 0 of option g(X7) as

(2) u®(0) = E%e™g(X7)].
Then, we get option price

(3)  w?(0) = E9BS(9() %001 T)]

= BO[E [g(@o exp(Y_(—5AH(T) + T2 D py(DWEDI)
j=1 j=1

where E* is an expectation with respect to equivalent martingale measure @ defined
in BS(g(-), zg,p,7,T) and Zg is an initial value. We hope that the trading strategy of
our model and others are studied in the sequel.
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In section 2, we analyze some real data by using some computer programs. Form
these data, we predict many types of asset model by taking various sampling intervals.
In section 3, we define an asset model and study option pricing for a fixed measure. In
appendix, we include several figures which are implied by some sampling time.

2. ANALYSIS OF DATA

Table 1 is showing real trades of stock Samsung from January 20th, P.M. 1:26:56,
2005. As we see in Table 1, there are many trades by same price in short time, or at
same time. For a little long time, there is no tick even if there are many trades. From
this fact, we can predict asset model may not be represented by traditional asset models
containing Brownian motion part and jump-part. Further, we can image that many
different asset models may be obtained by taking different sampling time intervals.

Table 1
Real Trades of Stock Samsung
Jan.20th P.M. 1:26:56 - P.M. 1:28:30, 2005

Time Conclude | Ratio | Ratio | Ups and | Sell Call Conclude
hh mm ss | Price Downs | Price |Price | Number
13 26 56 | 481000 2 1000 | 0.21 481500 | 481000 | 23
13 26 57 | 481000 2 1000 |0.21 481500 | 481000 | 69
13 26 58 | 481000 2 1000 |0.21 481500 | 481000 | 14
13 26 58 | 481000 2 1000 |0.21 481500 | 481000 | 56
13 27 06 | 481000 2 1000 |0.21 481500 | 481000 | 47
13 27 09 | 481000 2 1000 |0.21 481500 | 481000 | 100
13 27 17 | 481000 2 1000 |0.21 481500 | 481000 | 5
13 27 17 | 481000 2 1000 {0.21 481500 | 481000 | 3
13 27 21 | 481000 2 1000 |0.21 481500 | 481000 | 14
13 27 22 | 481000 2 1000 |0.21 481500 | 481000 | 486
13 27 28 | 481000 2 1500 1§ 0.21 481500 | 481000 | 1
13 27 37 | 481000 2 1000 |0.21 481500 | 481000 | 64
13 27 37 | 481000 2 1000 | 0.21 481500 | 481000 | 156
13 27 58 | 481000 2 1000 |0.21 481500 | 481000 | 10
13 28 03 | 481000 2 1000 |0.21 481500 | 481000 | 1
13 28 13 | 481000 2 1000 | 0.21 481500 | 481000

13 28 24 | 481000 2 1000 |0.21 481500 | 481000 | 14
13 28 24 | 481000 2 1000 |0.21 481500 | 481000 | 46
13 28 30 | 481000 2 1000 | 0.21 481500 | 481000 | 34
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2.1. Real tick data. To predict many different type of asset models, we use the US
Treasury Bond Futures Chicago contract with a maturity of December 1990. Our
sample begins on the lst of October, 1990, A.M. 07:20:31. The first part of several
minutes of real tick data is shown in Table 2. This stream of data resembles what
might be seen on a real-time data-feed offered by many vendors.

Table 2
US Treasury Bond Futures
Price Ticks 1990 October 1

Time of Day | Contract Code | Futures Price
hh mm ss Month Year US Dollar
07 20 31 Z 1990 89.59375
07 20 32 7 1990 89.56250
07 20 33 7 1990 89.59375
07 20 34 H 1991 89.18750
07 20 38 H 1991 89.15625
07 20 38 Z 1990 89.56250
07 20 45 Z 1990 89.59375
07 20 54 7 1990 89.56250
0721 00 71990 89.59375
07 21 11 Z 1990 89.56250
07 21 18 Z 1990 89.59375
07 21 21 Z 1990 89.56250
07 21 41 Z 1990 89.59375
07 21 55 Z 1990 89.53125
07 21 59 7 1990 89.56250
07 21 59 7 1990 89.53125
07 22 10 Z 1990 89.56250
07 22 12 7 1990 89.53125
07 22 18 7 1990 89.56250

If we read Figure 1, almost all ticks are one unit up(+) or down(-). Further, we
notice that, so-called, big jumps are not occur. We can find a little big jump at a little
before 4000th tick in Figure 1. Figure 2 shows the movements of actual price till the
time which occurs the 4000th tick. Following Table 3 shows the number of each At for
500 seconds, 500 seconds, 600 seconds, and 240 seconds. Figure 3 also shows that the
distribution of the length of time interval At between a tick and next tick. Thus, from
this Figure 3, we know that many ticks occur in short time, i.e., many next ticks occur
within several seconds.
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Oct. 1st A.M. 07:20:31 - 07:51:11(30min.40sec.)

Table 3

Time(seconds) between ticks(At)

Size
of At

(seconds) | 500sec. | 500sec. | 600sec.

20:31 28:51 | 37:11
-28:51 | -37:11 | -47:11

46:35
-50:35
240sec.
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2.2. Return rates. As we see in Table 4, if we consider ticks only, then the number of
returns are not symmetric in short time interval: 500 seconds, 500 seconds, 600 seconds,
and 240 seconds. If we cumulate all ticks for one month, then as we see in Table 5, we
notice that returns may converge to some almost symmetric curve.

Table 4
Real Total Ticks for 500, 500,600,240,1840 Seconds
Oct. 1st A.M. 07:20:31 - 07:51:11(30min.40sec.)
Tick | 20:31 28:51 37:11 | 46:35 20:31
size | -28:51 | -37:11 | -47:11 | -50:35 -51:11
x107% | 500sec. | 500sec. | 600sec. | 240sec. 1840sec.
3 37 33 28 14 112
0 0 0 0 0 0
-3 36 35 27 14 112
-7 1 0 0 0 1
sum. 74 68 55 28 225
Table 5
Real Total Ticks Number for One Month
Oct. 1st A.M. 07:20:31 - One Month
Tick
size 15111 7 3 0 -3 -7 |-11|-15 | sum.
x10~4
Number
of 710 [11]19621 |16 |19544 (22| O | 10 | 39210
Ticks

Let us think 10 seconds investigation interval, for 1840 seconds, as we see in Table
6 and 7, the return rates are not distributed as normal symmetric density and there is
no big jump in this short time, 1840 seconds. Figure 4 is a graph of the first vertical
of Table 6 and Table 7 for the first 500 seconds. Figures 5 shows the cumulated ticks
of 10 seconds sampling interval for 40,000 seconds(11hours, 6minutes and 40seconds).
But, they show also that the return rate have not balanced curve in short-term asset
price movements. In Figure 5, we get a little big jump at just before of 20,000 seconds.
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Table 6
10 Second Interval Investigation Tick Numbers
Oct. 1st A.M. 07:20:31 - 07:51:11(30min.40sec.)
Tick | 20:31 | 28:51 | 37:11 | 47:11 20:31
size | -28:51 | -37:11 | -47:11 | -51:11 -51:11
x10~% | 500sec. | 500sec. | 600sec. | 240sec. | 1840sec.
7 2 5 0 0 7
3 11 9 12 5 37
0 23 20 37 16 96
-3 10 16 10 3 39
-7 4 0 1 0 5
sum. 50 50 60 24 184
Table 7
10 Second Interval Cumulated Tick Numbers
Oct. 1st A.M. 07:20:31 - 07:51:11(1840second)
Tick | 20:31 20:31 20:31 20:31
size -28:51 -37:11 -47:11 -51:11
x10~* | 500sec. | 1000sec. | 1600sec. 1840sec.
7 2 7 7 7
3 11 20 32 37
0 23 43 80 96
-3 10 26 36 39
-7 4 4 5 5
sum 50 100 160 184

As we meet in Figure 3 of [10], micro structure of asset price movements is jump type
perfectly. From this, if we use a difference equation X a¢ — Xt = X; Y, for At =10
second, we may derive some asset models which are usual in mathematical finance area,
and are represented by using Brownian motion and jump-type Lévy process. But, in
our short-sampling data in short time, almost all of return rates are concentrated at
around 0, and it is not easy to predict common models from our Tables and Figures.

2.3. Long-sampling interval. Figure 6 is that of the sampling interval is At = 100
seconds (one minute and 40 seconds) for 400,000 seconds (111 hours, 6 minutes and 40
seconds). Figure 7 is that of the sampling interval is At = 1,000 seconds (16 minutes
and 40 seconds) for 500,000 seconds (138 hours, 53 minutes and 20 seconds). Figure
8 is that of the sampling interval is At = 10,000 seconds (2 hours, 46 minutes and 40



38 JOE KELLEY AND JAE-PILL OH

seconds) for 600,000 seconds (166 hours, and 40 minutes). Finally, Figure 9 is that of
the sampling interval is At = 100,000 seconds (27 hours, 46 minutes and 40 seconds)
for 1,500,000 seconds (416 hours, 40 minutes).

From these long-sampling interval data, we notice that the distributions of return
rates may have almost normal density functions. For these asset models, we also have
some articles. Particularly, in [1], we meet many figures for the sampling interval At =
one day, one month, three month, and one year in Figure 6 in page 41 of (1], and meet
an asset model: Disentangled diffusion from jumps model.

2.4. Statistical method to convolution simulation. If we want to get m-fold con-
volution density for short-term asset model, we can use statistical data to get more
stable density. The distribution(density) of summed return is represented as more
stable bell shape than each unbalanced figure.

Simulation of three stocks tick frequency
Tick-size | S-asset | L-asset | H-asset | S/2+L/4+H/4
6 x 10~* 1 4 3 2.25

1 1 3 1.5
4x107% 6 3 2 4.25
10 3 1 6
2x 1074 11 1 2 6.25
96 183 94 117.25
0 340 270 360 327.5
95 123 125 109.5
—2x1074| 20 2 3 11.25
10 0 0 5
—4 x 107* 2 1 2 1.75
5 4 2 4
—6 x 10~* 3 5 3 3.5
sum. 600 600 600 600

2.5. Conclution. As we see Table 4,6, and 7, in short-sampling asset price movements
of short time, the mean of return rates are not 0 and also density is not symmetric. We
notice from Table 5, if we cumulate for long time, the density of distribution of return
rates may converge to some heavy tail with jump model. Even if we can get much
information for short time data by using short-sampling intervals, the distributions of
short-term asset models may not be stable.
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The short-term asset price movements are flexible figures relatively. We think it
comes from volition and the intension of each investor (writer). Many writer’s will
influence to the prices of assets. Their decision comes from many information, for
example, auxiliary data, another asset prices, waiting number of stocks, etc. Thus, if
we think an short-sampling asset model, we must take into account above many factors.

From many tables and figures, a short-term asset model, it is difficult to represent by
using a fixed stochastic process because derived figures are changeable and data are not
many(cf. Table 6). Thus, if we use the summation of return rates of another assets
which are adjusted by influence levels, we can get more stable realistic asset model
than one represented by a return rate process. Further, in short-term (for example,
intraday, half day, 500 seconds, etc) asset models, the deterministic terms of return
rate processes are not needed because they are stable increasing rates of assets derived
from (arising in) a little long time in general.

3. ASSET MODELS

In mathematical finance side, asset model started from Black-Scholes model(c.f., [6],
[18]). As we know, asset models were developed by many mathematicians. Nowadays,
we can meet many types of asset models represented by the solutions of SDEs.

In general, many asset models were started form one of assumptions which are of
two kinds of return rates. One is Z; defined by Z; = log X; — log X;_, and the other
is 7, defined by Z; = (X; — X;_1)/X¢—1. For the prior assumption, if we think the
returns over n periods, then the sum is

Zi+ Zop1 + o+ Zpgn—1 = log Xppn—1 —log Xe—1.

But many traditional models which are derived from above lognormality(prior as-
sumption) deviate in systematic ways from empirical observation(c.f., [4], [9]). From
the second assumption of return rate Z; defined by Z; = (X¢ — Xt—1)/X¢—1 for an asset
price X;, we can derive a stochastic difference equation;

Xk:—‘Xk—l = Xk,—lUka k= 1727"' >
= Xg-1(& — a),
where £, are some random variables, a is some real number. From the Figure 1(c.f.,
[10], Figure 3), as we predicted in section 2.2, if we take unit time as At = 10 seconds,
we can derive stochastic difference equations on a probability space (2, F, P),
(4) Xp— Xy = CXP)E —ap), keEN
,X(T)L = 19 € Rd,
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where af = E[¢21011(/€¢))|F_,]) and C is a Lipschitz continuous function from R to
R% x R™, and define an interpolating process X{* of { X} }x by

(5) Xy = Xppy, for te[0,00).

Then, under some assumptions on {¢2} for the weak converges of {X"}, to a jump-
diffusion, we can get that the X7* of (5) is a solution of

t+
X7 = =g +/ v( Xy )dZY,
0

t+ t+
VAGES / / »(dz,ds) / / 2" Np(dz,ds)
\ \<1 |2]>1

[nt]

> {8 - ElglFRa),

k=1

where

and that the law of {X]'},, of (5) converges weakly to the law of unique solution of SDE

t+
(6) Xe=x0+ C(X,-)dYs,
0

where Y; is a Lévy process

t+ - t+
(7 Y =Wy + / / zNp(dz,ds) + / / zNp(dz,ds),
0 Jizl<a 0 Jz>1

W; is a centered Brownian motion with a covariance matrix V, N, is a stationary
Poisson process with the intensity measure v(dz)ds.

This result looks like very useful one. But when we want to buy or sell some given
stock in real stock market, first, we check the movements of prices of the past to
given fixed stock, and then we compare present price with some another stock prices
which influence to given fixed stock by using electric bulletin board or internet. Thus,
we assume that the price movements are influenced from some another stock prices.
Our model is similar as that of [16] when we don’t think jumps, and is influenced
from [4] which described the empirically observed distribution more closely than the
traditionally used lognormal model. From Table 4, and 5, we also know that the
distribution of X; is concentrated in 0. Thus the form of density function is very high
at mean 0, and the variance is very small.

For dX; = (dX},dX}, -+ ,dX{)* representing d asset prices and a?(t—) > 0 which
denotes the levels of influence to the ith asset price from the jth source of uncertainty
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(weight coefficients), we define an asset model as a SDE

m
(8) dXti:Xti_Zaz-(t——)dYtj, d<m, i=12,---,d,
=1
where
(9) Y/ :W3+/ / 2N, (dz, ds),
0 |z|<1

and aj»(t—) denotes the level of influence to the ith asset price at time ¢— from the jth

source of uncertainty, and Wtj is a Brownian motion having mean p and variance V
and the density function which is heavy tail form. If we put

. t i
M = / / 2? Np(dz, ds),
0 Jo<|z|k1

then, we denote our asset model by the form
. . m . . .
(10) dX} =X} ) o(t=)(dW] +dM}),
Jj=1

where Mtj is the martingale given by stochastic integrals which is integrated by com-
pensated counting measure Np(dz,ds) denoted from stationary Poisson point process
{p:} on R™ — {0} with intensity measure v (Lévy measure) satisfying

(A.1). fle z*v(dz) < oo,

(A.2). fIn(1 + 2)?v(dz) < o0,

(A.3). The support of v is contained in (-1, 00),

(A.4). [min{l,z?}v(dz) < oo .

Further, if we think our model as a volatility model, then we can represent it, by
using a volatility o; process, as the following form:

m
(11) dX} = Xi_ Y al(t-)(o]dW] + dMy),
j=1

where WtJ are standard Brownian motions.

In the following, we think the option pricing of asset price X i expiring at time T' > 0,
and whose payoff at time 7' is equal to g(X%). We assume that payoff function g(-)
is a real, positive, measurable function and that g(X?%) has a finite expectation. In
incomplete markets, it is almost impossible to get the exact value of option because
we can’t find an appropriate new probability measure. Thus, we assume that there is
a probability measure () equivalent to the given probability P, and denote E€? as the
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expectation relative to new equivalent measure (). In any case, we define ()-price at
time ¢ = 0 of option g(X%) as following

(12) u@(0) = B9 e g(X})].

This @Q-price of option is useful from a theoretical and a practical point of view. In
fact, under any meaningful definition of feasible self-financing replicating strategy, the
(Q-price is a price that prevents arbitrage opportunities. Further, in short-term asset
model, option pricing of jump-type asset model under a fixed equivalent martingale
measure () has some meaning because almost all of circumstance of price movements
are not changed in short time (not influenced from interest rate, etc).

From the previous, ith asset prices(ith coordinate) is represented as following; for
deterministic functions ag(s—),

(13) Xt—x0+/X’_Za )oldWi +dMJ), i,j=1,2,---,m

In the following, we will omit the superscript i. We will get the Q-price of option
g(X7). Thus, we assume that Q is an equivalent martingale measure, and get an SDE:

m

dXy = Xio ) [oy(t=)oldWP27 + aj(t—)dM7)
j=1
m

(14 = Xl (AW + g (t-)aM )
j=1

where p;(t) := o;(t— )at are coefficients of standard Brownian motions named by in-
fluence volatility,

. . t .
W2 = Wg—/0 ®lds,
M2 = Nt—/0(1+\11§)>\ds,

and where @) and ¥ are given by same terminology as [13]. We get a solution as a
closed form of X;,

Xy = asoexp{z p] +p](t)WQ’7 - aj(t- )/ M (1 + ©d)ds]}

(15) XIIogng[Hj:1(1 +aj(s—)ANY)].
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To get the option price u@(0), we introduce the Black-Scholes model (c.f. [13]). Let

BS(g(),zg,p,r,T) be the no-arbitrage price of option of Black-Scholes model X;,0 <
t < T which is the solution of SDE:

m
dXe = Xo= Y pj(£)dW,2?,
j=1
and whose solution is

X, = zoexp{Y_(—302(0) + oy O},
j=1

where 7 is the risk-free interest rate, p is influence volatility and T' is the maturity.
Then we get

BS(g(')7$07p7 TvT)

= e—TTE*[g(xoexp{Z(—épﬂT) Tlﬂzp TYWEIY)]
j—l

(16) — T /_ xoexp{z ~ 5T + T2} )y,

where f(y) is a m-fold convolution function defined by

d -0 ,
y) = @Q(ijmwé?” <y), =12, ,m

Thus, we get option price of our model;

Theorem 3.1 Let M? be a Q-local martingale, that is Q-independent of W®. Then
we get

17 w®(0) = E9BS(g(), rfo,p,rT)]
= E°[E*[g( woexp{z 2/)] Tl/QZP W),

where E* is the expectation w.r.t. equwalent measure @ deﬁned in BS(g(-),z0,p,7,T)
and

m T . .
T = moexp{_zaj(:r)/ N (1 + 9)ds}
i=1 0

Mo<s<r[I2, (1 + a;(s—)AN])].



44

(1]

(9]
(10]
(11]
[12]
(13]

(14]
(15]

(16]

(17]
(18]

(19]
(20]
(21]

(22]

JOE KELLEY AND JAE-PILL OH

REFERENCES

Y. Ait-Sahalia; Disentangling diffusion from jumps, Journal of Financial Economics, Vol 74, (2004)
487-528

K. Amin; Jump-diffusion valuation in discrete time, The Journal of Finance, Vol. 48, No. 5. (1993),
1833-1863

L. Bachelier; Theorie de la Speculation, Dissertation, Paris (1900)

S. Beckers;, A note on estimating the parameters of the diffusion-jump model of stock returns,
The Journal of Financial and Quantitative Analysis, Vol. 16, No. 1. (1981), 127-140
www.bis.org; The Bank of International Settlements

F. Black, M. Scholes; Option pricing and corporate liabilities, Journal of Political Economy, 81,
(1973), 637-654

T. Chan; Pricing contingent claims on stocks driven by Lévy processes, Ann. Appl. Probab. 9,
(1999), 504-528

S. Cyganowski, L. Grune, P.E. Kloeden; MAPLE for jump-diffusion stochastic differential equa-
tions in finance, in Programming Languages and Systems in Computational Economics and Fi-
nance, S.S. Nielsen, ed., Kluwer Academic Publishers, Amsterdam (2002)

E. Eberlein, J. Jacod; On the range of option prices, Finance and Stochastics Vol. 1 (1997), 131-140
E. Eberlein, U. Keller; Hyperbolic distributions in finance, Bernoulli, Vol. 1, No. 3. (1995), 281-299
E. Eberlein, U. Keller, K. Prause; New insights into smile, mispricing, and value at risk: the
hyperbolic model, The Journal of Business, Vol. 71, No. 3. (1998), 371-405

F. Gerhard; Empirical models of the intraday process of price changes and liquidity - A transaction
level approach. c.f., Ph. D. Dissertation, University of Konstanz, 2000

S. Herzel; Option pricing with stochastic volatility models, Decisions in Economics and Finance,
Vol. 23, (2000), 75-99

www.ibbotson.com; Roger Ibbotson Associates and Yale University

B. Jensen; Option pricing in the jump-diffusion model with a random jump amplitude: A complete
market approach. Center for Analytical Finance. Working Paper Series, 42 (1999)

I. Karatzas; Lectures on the Mathematics of Finance, CRM Monograph Series of American Math-
ematical Society, (1997)

B. Mandelbrot; Variation of certain speculative prices, Journal of Business, Vol. 36, (1963), No. 4
R. C. Merton; Theory of rational option pricing, The Bell Journal of Economics and Management
Science, Vol 4, No 1, (1973), 141-183

S.-H. Poon, Clive Granger; Forecasting volatility in financial markets: a review, SSRN Electronic
Library (2002)

P. Protter; A partial introduction to financial asset pricing theory, Stochastic Processes and their
Applications Vol. 91 (2001) 169-203

P. Protter; Stochastic Integration and Differential Equations, Berlin Heidelberg N.Y., Springer,
2nd Printing, (1992)

W. F. Sharpe; Capital asset prices with and without negative holdings, The Journal of Finance,
Vol. 46, No. 2 (1991), 489-509



SHORT-SAMPLING ASSET MODEL

4. AppeENDIX: FIGURES
Figure 1. Tick Returns on US T-Bound Future
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Figure 2. Actual Prices
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Actual Prices on USTBoFut
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Figure 3. dt Change Time

dt Change Time on USTBoFut
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Figure 4. 10 seconds Returns
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Figure 5. 10 Seconds Returns
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Figure 6. 100 Second Returns

100 second returns on USTBoFut
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Figure 7. 1,000 Second Returns

1000 second returns on USTBoFut
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Figure 8. 10,000 Seconds Returns

10,000 second returns on USTBoFut
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Figure 9. 100,000 Seconds Returns

100,000 second returns on USTBoFut
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