DOI QR코드

DOI QR Code

Ohmic contact formation of single crystalline 3C-SiC for high temperature MEMS applications

초고온 MEMS용 단결정 3C-SiC의 Ohmic Contact 형성

  • 정귀상 (울산대학교 전기전지정보시스템공학부) ;
  • 정수용 (동서대학교 정보시스템공학부)
  • Published : 2005.03.30

Abstract

This paper describes the ohmic contact formation of single crystalline 3C-SiC thin films heteroepitaxially grown on Si(001) wafers. In this work, a TiW (Titanium-tungsten) film as a contact matieral was deposited by RF magnetron sputter and annealed with the vacuum and RTA (rapid thermal anneal) process respectively. Contact resistivities between the TiW film and the n-type 3C-SiC substrate were measured by the C-TLM (circular transmission line model) method. The contact phases and interface the TiW/3C-SiC were evaulated with XRD (X-ray diffraction), SEM (scanning electron microscope) and AES (Auger electron spectroscopy) depth-profiles, respectively. The TiW film annealed at $1000^{\circ}C$ for 45 sec with the RTA play am important role in formation of ohmic contact with the 3C-SiC substrate and the contact resistance is less than $4.62{\times}10^{-4}{\Omega}{\cdot}cm^{2}$. Moreover, the inter-diffusion at TiW/3C-SiC interface was not generated during before and after annealing, and kept stable state. Therefore, the ohmic contact formation technology of single crystalline 3C-SiC using the TiW film is very suitable for high temperature MEMS applications.

Keywords

References

  1. G T. A. Kovacs, Micromachined Transducers Sourcebook, McGraw Hill, 1998
  2. G. S. Chung, 'Thin SOI structures for sensing and integrated circuit applications', Sensors &. Actuators A, vol. 39, pp. 241-251, 1993 https://doi.org/10.1016/0924-4247(93)80226-7
  3. P. M. Sarro, 'Silicon carbide as a new MEMS technology', Sensors & Actuators A, vol. 82, pp. 210-218, 2000 https://doi.org/10.1016/S0924-4247(99)00335-0
  4. M. Mehregany and C. A. Zorman, 'SiC MEMS: opportunities and challenges for application in harsh environments', Thin Solid Films, vol. 355, pp. 518-524, 1999 https://doi.org/10.1016/S0257-8972(99)00374-6
  5. Y. T. Yang, K. L. Ekinci, X. M.H. Huang, L. M. Schiavone, and M. L. Roukes, 'Monocrystalline silicon carbide nanoelectromechanical systems', Appl. Phys. Lett., vol. 78, no. 2, pp. 165-167, 2001 https://doi.org/10.1063/1.1339262
  6. P. M. Sarro, 'Silicon carbide as a new MEMS technology', Sensors & Actuators A, vol. 82, pp. 210-218, 2000 https://doi.org/10.1016/S0924-4247(99)00335-0
  7. M. Mehregany, C. A. Zorman, N. Rajan, and C. H. Wu, 'Silicon carbide MEMS for harsh environments', Proc. IEEE, vol. 86, no. 8, pp. 1594-1609. 1998
  8. J. A. Edmond, J. Ryu, J. T Glass, and R. F. Davis. 'Electrical contacts to silicon carbide thin films', J. Electrochem. Soc. vol. 135, pp. 359-362, 1998 https://doi.org/10.1149/1.2095615
  9. M. I. Chaudhry, W. B. Berry, and M. V. Zeller, 'A study of ohmic contacts on ${\beta}-SiC$', Int. J. Electronics, vol. 71, pp. 439-444, 1991 https://doi.org/10.1080/00207219108925489
  10. J. S. Chen, A. Bachli, M. A. Nicolet, L. Baud, C. Jaussaud, and R. Madar, 'Contact resistivity of Re, Pt and Ta films on n-type ${\beta}-SiC$: Preliminary results', Mater. Sci. Eng. B, vol. 29, pp. 185-189, 1995 https://doi.org/10.1016/0921-5107(94)04049-A
  11. G S. Chung, Y S. Chung, and S. Nishino, 'Physical characteristics of 3C-SiC thin-films grown on Si(100) wafer', J. of KIEEME, vol. 15, no. 11, pp. 953-958, 2002 https://doi.org/10.4313/JKEM.2002.15.11.953
  12. L. M. Porter and R. F. Davis, 'A critical review of ohmic and rectifying contacts for silicon carbide', Mater. Sci. Eng. B, vol. 34, pp. 83-88, 1995 https://doi.org/10.1016/0921-5107(95)01276-1
  13. G K. Reeves, 'Specific contact resistance using a circular transmission line model', Solid State Electronics, vol. 23, pp. 487-490. 1978 https://doi.org/10.1016/0038-1101(80)90086-6