

기술동향

인공위성 구조계 개발동향

글 / 이 주 훈 jrhee@kari.re.kr 한국항공우주연구원 다목적위성사업단 위성기술실 위성본체그룹

1. 서론

구조계 (Structures and Mechanisms Subsystem) 는 인공위성의 본체 및 태양전지판 구조체, 탑재 체, 안테나 및 반사경 (Reflector) 등의 지지 구조 체를 설계/해석 및 제작한다. 구조체는 시스템/타 부분체 및 발사체 요구조건을 만족하며, 탑재체 (안테나 및 반사경 등 포함), 전자장비 및 태양전지 판을 보호 및 지지 한다. 그리고, 태양전지판, 안테 나 및 반사경 등을 전개한다. 발사 및 우주의 열 환 경은 구조체의 형상 및 무게 등을 결정하는 중요한 요소로서 작용한다.

구조체는 임무 및 요구조건 분석, 위성형상 결 정, 질량버짓 계산, 안정성 및 인터페이스를 고려한 설계, 치수 결정의 단계를 반복적으로 수행하여 최종 설계에 수렴하도록 한다. 안정성 여부는 발사체의 고 유진동수 요구조건 및 준정적하중 (Quasi-static Load)에 대한 안전여유, 실제 발사체 환경을 고려한 연성하중해석 (Coupled Loads Analysis) 등으로 평 가되며, 위성체 조립 후, 시스템레벨의 환경시험에 의하여 최종 검증된다. 태양전지판은 전력 요구조 건 충족 및 자세제어 주파수 밴드를 피할 수 있도 록 설계된다.

현재, 임무 및 요구조건에 따른 위성 본체 구조 체의 외곽은 사각형, 육각형 및 팔각형 등의 형상, 태양전지판 구조체는 여러 개의 패널이 전개시스템 으로 연결된 형상, 탑재체, 안테나 및 반사경 등의 지지 구조체는 트러스 형상으로 주로 설계된다. 재 질은 금속질의 알루미늄 (Aluminum), 마그네슘 (Magnesium), 티타늄 (Titanium) 및 베릴륨 (Beryllium) 합금, 비 금속질의 복합재 (Composite)가 사용되며, 알 루미늄합금 및 CFRP (Carbon Fiber Reinforced Plastic) 복합재가 혼용되어 주로 사용된다. 금속 재질 및 복합재의 혼용 설계 시, 우주의 극심한 온 도 변화에 따른 열 변형이 고려되어야 한다.

구조체는 무게 및 비용을 줄이기 위하여 최대한 소형으로 설계 및 제작되어야 하며, 본체 구조체의 무게는 연료를 제외한 본체 무게의 20%를 넘지 않 는 것이 보통이다[1].

그리고, 최근에는 위성의 비용, 무게 및 크기를 획기적으로 줄이기 위하여, 구조, 열제어 및 전자 의 기능이 혼합된 본체의 다기능 구조체 (MFS: Multi-functional Structure)[2,3], 안테나와 유사 하게 접혀져 전개되는 유연성 (Flexible) 및 집광기 (Concentrator)를 장착한 태양전지판, 복합재 특성 을 이용한 팽창식 (Inflatable) 태양전지판 전개시 스템이 개발 중에 있다[4].

2. 구조체 형상

2.1 본체/탑재체지지 구조체

위성의 본체는 각 국가의 기업별로 기본 고유모 델을 가지며[5], 탑재체 및 태양전지판은 위성의 임무 및 요구조건에 따라 변경된다. 표 1은 우리나 라의 우리별, 무궁화위성 및 다목적실용위성 본체 의 기본모델을 나타내며, 그림 1은 다목적실용위성 1호의 T200 본체 모델을 기본으로 설계된 다목적 실용위성 2호 본체의 내부 모습을 보여준다.

인공위성	기업/국가	모델	
우리별 1, 2호	SSTL/UK	Microsat-70	
무궁화위성 1, 2호	Lockheed Martin/USA	3000	
무궁화위성 3호	Lockheed Martin/USA	A2100	
무궁화위성 5호	Alcatel Space/ France	Spacebus- 4000	
다목적실용위성 1호	Northrop/USA	T200	

표 1. 우리나라 위성 본체의 기본모델

그림 1. T200 모델/ 다목적실용위성 2호 저궤도 지구관측 위성

참고문헌 5의 기본 고유모델 중 정지궤도에서 운용되는 통신, 기상 및 항해항법 위성의 외곽형상 은 원통형 (그림 2) 및 사각형 (그림 3)이다. 외곽크 기가 통상적으로 발사체 인터페이스 (직경: 약 965 혹은 1,194 mm) 보다 크며, 탑재체를 포함하는 모 든 장비의 무거운 하중을 발사체로 전달하기 위하 여 본체 가운데에 원통 혹은 콘 형상의 패널이 놓여 진다. 원통 혹은 콘 형상의 패널은 플랫폼 및 쉬어 패널 (Shear Panel)을 통하여 외곽패널과 결합된 다. 외곽형상이 원통형인 경우, 링 및 수직 바로 구 성된 트러스 구조를 외곽패널이 감싸며, 태양전지 셀이 외곽패널에 장착된다. 그리고, 원통형 본체의 높이는 발사 부피를 줄이기 위하여 발사 후 전개되 도록 설계된다.

그림 2. Intelsat-4A 정지궤도 통신위성 (Spin Stabilization, 직경 : 2.38m)

저궤도에서 주로 운용되는, 정지궤도 위성 대비, 소형의 지구관측 및 과학/실험 위성 (혹은 기상 및 통신 위성)의 외곽형상은 사각형 혹은 사다리꼴, 육 각형 및 팔각형 등이다. 탑재체를 포함한 모든 장비 의 하중은 외곽코너 구조물의 론저론 (Longeron) 등 (그림 1)을, 혹은, 본체 가운데에 놓여질 트러스 구조의 탑재체지지 구조체 (그림 4) 및 추진모듈 (그림 5)을, 통하여 발사체로 전달된다. 외곽코너의 론저론 등은 플랫폼을 지지하며, 외곽패널로 감싸 진다.

그림 3. Amos 정지궤도 통신위성 (2.33×2.39×2.07m)

그림 4. Pleiades 저궤도 지구관측 위성 (2006년 발사 예정)

그림 5. Demeter 저궤도 지구과학 위성 (2004년 발사 예정)

여기서, 플랫폼 및 패널은 하니콤 코아 (Honeycomb Core)의 양측에 얇은 면재 (Facesheet)가 부착된 샌드 위치 패널을 의미한다.

탑재체지지 구조체는 탑재체 종류에 따라 여러 형상 을 가지며, 트러스 구조로 주로 설계된다. 탑재체지지 구조체 (혹은 탑재체)와 본체 구조체는 Iso-static 설계 (축방향 힘은 전달하나 모멘트는 전달하지 않음)로 연결 되며, 그림 6은 저궤도 지구관측 위성 고해상도 카메라 가 본체와 Iso-static 설계로 연결된 모습을 보여준다.

그림 6. 고해상도 카메라/본체의 Iso-static 설계 접속

2.2 태양전지판 구조체[4]

보편적인 태양전지판 구조체는 여러 혹은 한 개 의 패널이 전개/고정 시스템으로 연결되어 발사 시 본체에 접혀지며, 발사 후 전개된다. 태양전지셀은 각 패널에 장착된다. 정지궤도 위성의 원통형 본체 의 경우 (혹은 저궤도 소형위성의 경우)는 태양전 지셀이 본체 외곽패널에 직접 장착된다. 전개되는 태양전지판 구조체의 패널은 견고성 (Rigid), 유연 성 혹은 집광기가 장착된 형태로 분류된다.

견고성 패널은 널리 이용되는 형태로 하니콤 샌드위 치 패널로 주로 설계되며 (그림 1), 스프링에 의하여 구 동되는 전개시스템으로 연결된다. 다목적실용위성 1, 2 호의 태양전지판 구조체는 견고성 패널에 테이프 (Tape) 를 이용한 전개시스템으로 설계 되었다. 하니콤 샌드위 치 패널 외에 고려될 수 있는 패널은 유사한 격자로 보 강된 구조물 (Isogrid Reinforced Structure)이다.

유연성 패널은 박막 (두께 : 1mm 이하)의 팽팽함과 유연함을 가진 담요 (Tensioned Flexible Blanket) 형태로 코일식 (Coilable), 관절식 (Articulated) 막 대 (Mast) 혹은 튜브식 (Tubular)을 이용한 전개시 스템으로 연결된다. 비용, 무게 및 접혀진 크기의 획 기적인 감소를 위하여 개발 중인 팽창식 (Inflatable) 전개시스템은 전개 후 태양열에 의한 복합재 경화로 요구되는 강도 및 강성을 가진다.

전개/고정 형태는 견고성 패널과 유사하게 접혀져 전개되는 방식 (Accordion Fashion Type, 그림 7)과 원통에 뚤뚤 말아져 전개되는 방식 (Roll-up Type, 그림 8)이 있다. 유연성 패널의 태양전지판은 1976년에 발사된 CTS (Communication Technology Satellite) 이후, Olympus, HST (Hubble Space Telescope), ERS 1, Milstar 및 EOS-AM에 적용 되었다.

그림 7. Accordion Fashion 형태의 유연성 태양전지판/ CTS 정지궤도 통신위성

그림 8. Roll-up 형태의 유연성 태양전지판/ Hubble Space Telescope 천문관측 위성

그림 9는 견고성 및 유연성 패널 (팽창식 전개시스 템 제외) 태양전지판의 무게 대비 전력을 비교한 것으 로 약 3KW 이하의 전력 요구 시에는 견고성 패널이 효율적이다. 이는 유연성 패널 태양전지판 전개/고정 시스템의 지지 구조물 무게가 과다한 것으로, 이의 단 점 보완을 위하여 안테나와 유사하게 접혀져 전개되 는 방식이, 현재, 시험 중으로 낮은 전력 요구에서 100W/kg의 효율을 갖는다 (그림 10). 또한, 단점 보 완을 위하여 팽창식 전개시스템이 고려되고 있다.

그림 9. 견고성 및 유연성 태양전지판의 전력/무게

그림 10. 안테나 형태의 유연성 태양전지판

집광기는 태양광을 한 곳으로 모으는 것으로 태 양전지셀에 비하여 매우 좁은 면적을 필요로 한다. 이는 태양전지관 개발 비용의 70%를 차지하는 태 양전지셀 및 장착 비용, 무게를 획기적으로 줄일 수 있다. 1980년도부터 개발이 시작되었으며, 이 중 SCARLET 모델 (그림 11)을 장착한 태양전지관이 METEOR (Multiple Experiment Transport to Earth Orbit & Return, 1995년 발사체 고장으로 실 패함) 및 DS1 (Deep Space 1/그림 12)을 통하여 실험되었다. SCARLET 모델 외 다른 개념에 의한 집광기 모델이, 또한, 개발 중에 있다.

3. 구조체 재질[1,4]

알루미늄, 마그네슘, 티타늄 및 베릴륨 합금은 강철 (Steel) 보다 가벼우며, 비 자기성이다.

알루미늄은 무게 대 강도 비가 강철과 동일하며, 제작 및 가공성이 뛰어나 가장 널리 사용된다. 단, 약 200°C 이상에서의 강도 저하 및 저온에서의 Creep이 단점이다.

마그네슘은 알루미늄 보다 가벼우나 강도가 낮 아, 약 200°C 이하의 고강도가 필요치 않으며, 무 게 감소가 필요한 부재에 사용된다. 습도에 약하여 부식 방지를 위한 표면처리가 필수적이다.

베릴륨은 밀도가 알루미늄과 비슷하나 강도는 강철과 동일하여, 540°C 이하에서 가벼움과 큰 강 성을 요구하는 부재에 사용된다. 제작 및 가공성이 떨어지며, 독성이 있다.

그림 11. SCARLET 집광기 모델

그림 12. SCARLET 집광기 태양전지판/ Deep Space 1 기술실험 위성

복합재의 우주분야 적용 예는 아폴로 계획 이전으 로 Fiberglass/Epoxy, Kevlar/Cyanate Ester 혹은 Kapton/Polyimide Film 등이 적용되었으며, 현재, CFRP가 가장 널리 사용된다. CFRP의 적용 예는 참 고문헌 6 및 7을 참조 바라며, 카본 섬유 (Carbon Fiber)의 형태는 Pan 및 Pitch로 특성은 표 2와 같다.

보편적인 하니콤 샌드위치 패널의 면재는 복합 재, 하니콤 코아는 알루미늄으로 구성된다. 유연성 태양전지판의 패널은 박막의 복합재로 설계 및 제 작된다. 복합재 구조체 연결 부위의 부싱 (Bushing), 인서트 (Insert) 및 End Fitting 등에는 열 응력을 감소시키기 위하여 티타늄 혹은 Invar 등의 금속 재질이 사용된다.

	Pan Fiber	Pitch Fiber
Crystal Orientation		Higher
Young's Modulus		Higher
Strength	3,000Mpa	5,500Mpa
Shear Strength	30Mpa	60Mpa
Fracture Toughness	Higher	
CTE*		Lower
Thermal Conductivity		Better
Electrical Resistance		Less

표 2. 카본 섬유

*Coefficient of Thermal Expansion

정밀한 열 안정성을 요구하는 광학 탑재체 (지지 구조체 포함)는 CFRP 이외 신소재인 SiC-100 (Silicon Carbide-100, 그림 13) 및 C/SiC (Carbon Silicon Carbide, 그림 14)를 이용하여 설계된다[8]. 그리고, 반사경 (Mirror)에는 유리 세라믹 (Glass Ceramic)인 Zerodur가 사용되기도 한다. 표 3은 구 조체 재질의 물성치이다.

그림 13. SiC-100 광학 탑재체/ ROCSAT-2 저궤도 지구 관측위성, Herschel 천문관측 위성 (2007년 발사 예정)

그림 14. C/SiC 광학 탑재체

4. 다기능 구조체[2,3]

현재의 위성은 구조체, 열제어 부품 및 전자장비 를 독립적으로 설계 및 제작하여 시스템레벨의 조 립 및 시험으로 완성된다. 다기능 구조체는 구조, 열제어 및 전자의 기능을 하나로 합치는 개념으로

표 3. 구조체 재질 물성치

	알루미늄	마그네슘	티타늄	베릴륨	Invar	Zerodur	CFRP	C/SiC	SiC-100
Density(10 ³ kg/m ³)	2.7	1.8	4.5	1.9	8.1	2.5	1.6	2.6	3.1
Young's Modulus(GPa)	70	44	120	280	141	90	120	170	420
$CTE(10^{-6} \text{ K}^{-1})$	23.5	26.1	8.9	11.4	1.2	0.05	0.1	2.2	1.4
Thermal Conductivity(W/mK)	237	114	22	160	10.5	1.5	30	130	180

샤시 (Chassis/PWB), 케이블 및 코넥터가 필요치 않으며, 열제어 및 전자 기능이 구조체 패널에 내장 된다. 전자기능의 구조체 패널 내장은 MCM (Multi chip Module) 및 패널 면재에 부착되는 유연성 회 로의 획기적인 발달에 의한 것이다.

그림 15. 다기능 구조체 개념도

그림 15는 AFRL(Air Force Research Laboratory) /BMDO(Ballastic Missile Defense Office)/ DARPA (Defense Advanced Research Project Agency)의 지원 하에 Lockheed Martin 사에서 개발된 기본 개 념도로 NASA의 NMP (New Millenium Program) 계 획으로 개발된 DS1 기술위성 (그림 16)에 탑재되어 성공적으로 검증되었다. 표 4는 보편적인 위성체와 다기능 구조체를 비교한 것으로 무게 및 크기를 50 ~ 80%까지 줄일 수 있다.

그림 16. DS1에 탑재된 다기능 구조체

표 4. 보편적 위성체 및 다기능 구조체

보편적 위성체	다기능 구조체
PWB*	MCM
Power/Ground Plane	Cu/Pi** Patches
Cable/Harness/Connector	Cu/Pi Flex Jumper
EMI Shielded Box	Molded Composite Cover
Thermal-Structural Panel	Composite Panel
Removal Replacement	MCM Socket
* Printing Wiring Board	

** Copper/Polyimide

5. 결론

위성 선진국의 경우, 복합재에 의한 본체 및 유연 성 태양전지판 구조체, 탑재체 (지지 구조체 포함) 개발이 완료되었으며, 집광기를 장착한 태양전지판, 팽창식 전개시스템 및 다기능 구조체의 실용화가 진 행 중이다.

국내의 위성 구조계 개발 현황은 알루미늄 본체 및 탑재체지지 구조체, CFRP 견고성 태양전지관 구 조체 설계/해석 및 제작 기반을 확립하였으며, CFRP 본체 혹은 탑재체지지 구조체 선행연구가 진 행 중이다. 그리고, 유연성 태양전지판 및 다기능 구 조체의, 향후, 위성 적용을 위한 장기 계획을 보유하 고 있다.

참고문헌

- Spacecraft Design, Structure and Operations, Chapter 10
- Barnett, David M. & Rawal, Suraj P., "Multifunctional Structures Technology Demonstration on NMP DS1", Deep Space 1 Technology Validation Symposium
- Harris, E. Nathan & Morgenthaler, Daniel R., "Design & Testing of Multifunctional Structure Concept for Spacecraft", AIAA-2000-1555, PP. 1-11, Apr. 2000
- Jones, P. Alan & Spence, Brian R., "Spacecraft Solar Array Technology Trends", AEC-Able Engineering Company, Inc.
- 5. http://www.skyrocket.de/space/, SC Platforms
- 6. http://www.pciaerospace.com/pci/products/
- 7. http://www.coimaterials.com/
- 8. Stockburger, Horst,"Light Weight Mirrors & High Precision Structures for Optical Systems", Astrium GmbH