1. 설치 배경

(1) 국내 하수슬러지 처리 실태

국내 하수처리장에서 발생되는 하수슬러지는 2002년말 기준 201개소의 하수처리장에서 하루 5,689톤이 발생되는 것으로 추정되고 있으며, 그 하수슬러지의 72%는 해양투기, 9%는 육상직매립, 10%는 소각, 나머지 9%는 재활용되고 있는 실정인데 2003년 7월 1일부터 시설용량 1만톤/일 이상인 하수처리장의 하수슬러지는 육상직매립이 금지되어 직매립량 감소분만큼 해양배출이 증가될 것으로 예상된다.

(2) 국외 하수슬러지 처리 실태

① 일본

일본 하수처리장 하수슬러지는 '99년 기준으로 71.5%가 중간처리과정으로 소각되고 있으며, 최종처리로서 매립 39.4%, 농경지 환원 14.4%, 건설

상주시의 하수슬러지 처리시설 및 운영사례

글 이상국 경상북도 상주시 도시과장

자재 43.6%, 해양배출 0.2%, 기타 2.4%로 처리되고 있다.

② 미국

미국에서는 '98년말 기준으로 퇴비화 및 농지주입 46.5%, 매립 27%, 소각 16%, 고형화 및 건조화 6%, 기타처리가 4.5%를 차지하고 있으며 '92년 이전까지는 해양배출이 6%를 차지하였으나 '92년 6월 이후는 미실시하고 있다.

③ 유럽

유럽은 EU에서 제정한 지침을 공통기준으로 하고 있으나 각국의 특성별로 독자적인 처리기준을 설정, 운영하고 있으며 통상 각국별로 보면 40~50% 정도가 녹농지로 환원처리되고 있으며, 그 다음 육상매립, 소각, 건설자재화(시험운영 중) 순으로 처리되고 있다.

(3) 현안

런던협약 가입 79개 국가 중에서 해양배출을 실시중인 국가는 대한민국

(72%), 일본(0.5%) 및 필리핀 3개국에 불과하며, 「런던협약'96의정서」 발효 대비와 NIMBY 현상 등으로 새로운 매립장 확보에 어려움이 예상되어, 처리의 안정성, 감량화, 경제성 등 종합적으로 검토한 결과, 생활쓰레기 및 하수슬러지를 동시에 소각시킬 수 있는 '상주시 생활폐기물 소각시설'을 '02년 4월 준공하여 운영하게 되었다.

2. 하수슬러지 발생 및 처리 현황

(1) 상주시 하수처리장 시설 개요

- 시설용량 : 일최대 26.000m³/일 (분뇨 연계처리: 90kl/일)

- 처리방식: 1차처리 - 중력침강

2차처리 - 표준활성슬러지법 슬러지처리 - 중력농축 후, 탈수

- 하수슬러지 발생량 : 6.8ton/일

(2) 처리 계통도 : 그림 1〉 참조

(3) 연도별 하수슬러지 처리 현황 : 그림 2〉 참조

(4) 슬러지 저장시설(HOPPER)

① 기존시설 이용의 문제점

- 기존 시설 사양: 장제사각, 10m³, 중량계부착

- 문제점 : 소각시설의 정기 점검 및 보수시(평균 8~10일/월) 처리장에서 발생되는 하수슬러지 (6.8ton/일) 저장 설비 용량부족으로 해양투기를 해야 한다.

② 슬러지 저장시설 보완

- 보완 시설 사양 : 원형자립식Silo, 70㎡, 초음파레벨스위치

- 설치 후 전량 소각 처리

3. 처리시설(소각로) 운영 현황

(1) 시설 개요

- 위 치: 상주시 복룡동 환경사업소 내

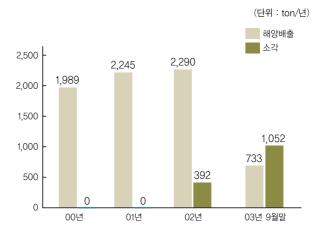


그림 2〉 연도별 하수슬러지 처리 현황

- 처리용량 : 48ton/일(생활쓰레기 38ton, 하수슬러지 10ton)

- 처리방식: 스토커식 + 슬러지 건조기

- 공사기간: 1999, 10~2002, 4

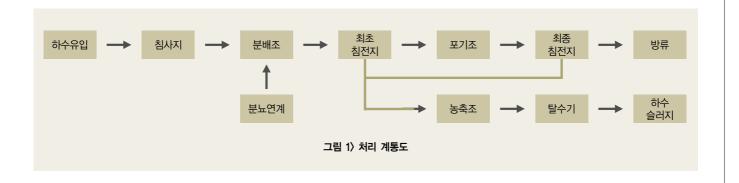
- 사 업 비 : 93억 원(민간자본 67억 원, 시비 26억 원)

민 자 : (주)한화 12년 운영톤당 처리비 : 86,500원

(2) 시설 계통도 : 그림 3〉 참조

① 하수 슬러지

② 생활 쓰레기


(3) 단위공정 설명

① 반입공급설비

계량기에 의해 반입량을 적산하고 반입장 진출입문을 통하여 소각장내로 반입되어 폐기물 벙커에 덤핑된다.

② 슬러지 건조설비

이송차량에 의해 반입된 슬러지(함수율 75~85%)는 슬러지 호 퍼에 투입된 후, 호퍼 하부의 배출 컨베이어에 의해 배출된 슬 러지를 슬러지 이송펌프를 이용하여 슬러지 건조기로 투입하

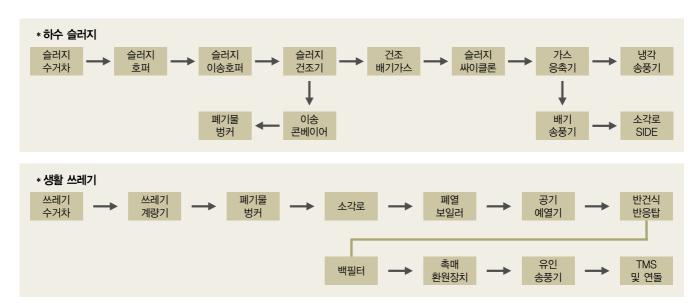


그림 3〉 시설 계통도

게 된다. 건조기에서 건조된 슬러지(함수율 40% 이하)는 배출 컨베이어에 의해 폐기물 벙커로 이송된 후, 생활폐기물과 함 께 소각처리 된다.

③ 소각설비

폐기물 크레인에 의하여 투입된 폐기물을 소각시키는 설비로 서, 화격자로 이송된 폐기물은 건조, 연소 및 후연소 과정을 거 쳐 재가 되어 재추출기로 낙하되며 연소가스는 폐열보일러로 배출된다.

④ 연소가스 냉각설비

연소가스 냉각설비는 폐기물 연소에 의해 발생된 고온의 연소가스를 이용하여 고온의 Steam과 고온의 연소공기의 예열을 이용하기 위해 폐열보일러와 공기예열기를 설치하였으며 이때 각 출구단의 연소가스 온도는 각각 320℃와 240℃로서 Dioxin의 생성을 최대한 억제할 수 있도록 하였다. 또한 폐열보일러에서 생성되는 Steam을 이용하여 슬러지 건조설비에 이용하게 된다.

⑤ 연소가스 처리설비

연소가스 냉각설비에서 240℃ 이하로 냉각된 연소가스는 먼지 및 여러 형태의 유해물질을 포함하고 있으므로 환경보전을 위해 배출허용 기준 이내로 유해물질을 감소시켜 대기로 배출한다. 먼지, 황산화물 및 다이옥신 제거설비로는 반건식반응답 백필터를 채택하였다.

⑥ 통풍설비

통풍설비는 공기를 공급해주고, 발생하는 연소가스를 방출하기 위한 시설이다. 압입송풍기 및 배기 송풍기 전단에 공기여

과기를 설치하여 폐기물 벙커 및 건조기 배출가스로부터 유입 되는 먼지를 제거하여 후속시설의 정상운전에 지장을 받지 않 도록 설치하였다.

⑦ 재처리설비

소각로에서 발생되는 재는 재배출장치(Ash Extractor) 및 재배출 콘베이어(Skip Hoist)에 의해 전량 압롤박스로 이송되며, 보일러, 공기예열기, 반건식반응탑, 백필터에서 발생하는비산재는 각각의 먼지함(Dust Box)내의 P.E 마대에 보관된후, 압롤박스로 이송되어 재 이송차량에 의해 매립장으로 이송되다.

⑧ 급·배수 설비

급수원은 지하수를 사용하며 처리시설 내 각 용수 소요설비의 요구 수질에 맞게 공급되도록 하였다. 소각장에서 발생되는 폐수는 침출수 집수조에 일괄 집수한 후 배수펌프에 의해 상 주 하수종말처리장으로 연계처리 후 방류토록 하였다.

⑨ 기타설비(압축공기, 연료공급, 악취제거)

압축공기설비는 제습공기가 필요한 부분에는 계장용 압축공기를 공급하고 일반 공기가 필요한 부분에는 공정용 압축공기를 공급하며, 연료로는 경유를 사용하며 경유의 소요처로는 소각로의 착화, 연소, 보조버너, 열풍건조기, 가스재가열기 및 비상발전기 등이 있다. 소각동내의 폐기물 벙커의 폐기물 악취를 흡입하여 연소용 공기로 사용하고, 건조기의 배기가스도 소각로 내의 연소공기로 사용하며, 소각 설비 정지시는 별도의 활성탄 흡착탑을 거쳐 대기로 배출시킨다.

구 분		반입량			가동	소각량			소각재	비고
		계	생활쓰레기	하수슬러지	일수	계	생활쓰레기	하수슬러지	발생량	미포
03년	1월	841.25	769.75	71.50	19	793.63	802.74	33,65	213,63	
	2월	849.77	773.74	76.03	17	709.68	789.98	28.14	185.31	
	3월	1,027.16	939.36	87.80	24	959.00	681.54	30.08	296.24	
	4월	990.28	904.65	85.63	25	1,072.51	928.92	27.07	282.83	
	5월	1,093.00	900.14	192,86	24	1,061.71	1,045.44	95.54	311.58	
	6월	1,023.24	924.52	98.72	22	919.37	966.17	44.60	256.45	
	7월	1,094.91	968.07	126.84	20	892.08	874.77	55.28	264.60	
	8월	1,190.72	1,030.76	159.96	28	1,268.14	836.80	85.99	365.45	
	9월	1,242.24	1,089.27	152,67	23	1,013.14	1,182.15	61.86	322.79	
Л		9,352.57	8,300.26	1,052.01	202	8,689.26	8,108.51	462,21	2,498.88	

표 1〉하수슬러지 및 생활쓰레기 소각량

(4) 소각시설 운영 현황

' 03년 9월말 현재 상주시 하수종말처리장 하수슬러지 전량을 소각처리하고 있으며 하수슬러지 및 생활쓰레기 소각량은 위의 표 1〉과 같다.

4. 하수슬러지 소각운영 결과

(1) 소각의 장점

- 슬러지케이크를 발생장소에서 재(ash) 상태로 전환시킬 수 있다.
- 소각처리에 의해 슬러지 중에 함유된 모든 병원균을 파괴할 수 있으며 독성유기물을 완전히 산화시킬 수 있다.
- 소각시 슬러지 중에 함유된 중금속은 산화물의 형태로 전환 되어 용출성이 낮아진다.
- 소각 회재의 낮은 용출성 때문에 소각 회재를 매입하더라도 토양과 수자원을 오염시키지 않기 때문에 소각법이 토양이 나 수자원을 보호하는 측면에서 장기적인 처리 수단이라 볼 수 있다.
- 소각설비에 적절하게 적용되고 설계된 소각 시스템은 비용 면에서 경제적이다.
- 대기질 문제는 최신 기술을 이용한 후 처리설비의 설치에 의해 해결할 수 있다.

(2) 소각의 단점

- 슬러지 처리비용이 비싸 소각보다 해양투기를 선호하고 있다.
- 매우 숙련된 운전기술이 필요하다.

- 처리 공정 건설에 따른 시설비 및 운영비가 많이 소요된다.

(3) 대기오염 상태

아래 표 2〉의 시험 결과치와 같이 다이옥신의 농도는 0.1ng TEQ/Nm³으로 법적 기준치 이내이며 경상북도(경북 환경 67221-11741호 '03.7.25)로부터 '대기 기본 부과금 면제시설'로 승인을 받았다.

측정 일시	다이옥신 배출량 (ng TEQ/Nm³)	분석기관	법적기준 (ngTEQ/Nm³)	비고
2002.6.4	0.033	산업기술시험원		기준치 이내
2002, 12, 11	0.043	서울시립대학	0.1	
2003.6.10	0.034 환경관리공단			

표 2〉 다이옥신 농도 시험 결과

5. 향후 추진 방향

런던 협약 '96의정서와 해양오염방지법 시행규칙 개정('04년 시행계획) 발효에 대비하여 상주하수 종말처리장에서 발생되는 하수슬러지 전량을 '상주시 생활폐기물 소각시설'에서 처리해 나갈 것이며, 소각시설을 효율적으로 운영함으로써 소각장 주변 주민들에 대한 민원 및 환경피해를 최소화 할 수 있도록 노력하며 소각처리 시설물에 대한 철저한 이해와 연구를 하여 더욱 더 효율적인 하수슬러지 처리가 될 수 있도록 기술 개발을 이루어 나가야 할 것이다. ❷