Kangweon-Kyungki Math. Jour. 12 (2004), No. 2, pp. 201–209

RANKS OF *k*-HYPERGRAPHS

YOUNGMEE KOH AND SANGWOOK REE

ABSTRACT. We define the incidence matrices of oriented and nonoriented k-hypergraphs, respectively. We discuss the ranks of some circulant matrices and show that the rank of the incidence matrices of oriented and nonoriented k-hypergraphs H are n under a certain condition on the k-edge set or k-arc set of H.

1. Hypergraphs

A hypergraph H = (V, E) is a pair of sets: one is the vertex set $V = \{v_1, \ldots, v_n\}$ and the other is the set $E = \{e_1, \ldots, e_m\}$ of so-called hyperedges which are subsets of V. A hyperedge is called a k-edge if it is a k-subset of V. We call a hypergraph having only k-edges a k-hypergraph. Notice that a 2-hypergraph is a usual graph. For a k-hypergraph H, the incidence matrix of H is defined as a (0, 1)-matrix of size $n \times m$ such that the ij-entry is 1 if vertex v_i is contained in k-edge e_j and 0 otherwise.

An orientation of a k-edge is a linear arrangement of the vertices of the edge. If a k-edge is given an orientation, then it is called a k-arc. If all of the hyperedges of a k-hypergraph are k-arcs, then the k-hypergraph is said oriented. Given an oriented k-hypergraph $\vec{H} = (V, \vec{E})$ with |V| = n and $|\vec{E}| = m$, we define the incidence matrix

Received November 19, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 05C50, 05C65, 15A18.

Key words and phrases: Hypergraph, adjacency matrix, incidence matrix, Laplacian matrix.

This work was partially supported by grant No. R04-2002-000-20116-0 from the Basic Research Program of the Korea Science and Engineering Foundation.

$$M = M(\vec{H}) = [m_{ij}] \text{ of } \vec{H} \text{ as an } n \times m \ (0, 1, -1) \text{-matrix by}$$
$$m_{ij} = \begin{cases} 1 & \text{if vertex } v_i \text{ is contained in } k \text{-arc } e_j, \\ & \text{but not as the last element,} \\ -1 & \text{if } v_i \text{ is contained in } e_j \text{ as the last element,} \\ 0 & \text{if } v_i \text{ is not contained in } e_j. \end{cases}$$

For each vertex v of a k-hypergraph H, we define the *degree* of v as the number of k-edges of H containing v. A k-hypergraph is said *regular* if all the vertices have the same degree. We say an oriented k-hypergraph \vec{H} is *regular* if the degrees of the vertices are all equal and the number of k-arcs containing any given vertex as the last element is a constant. From the fact that

$$k|E| = \sum_{v \in V} deg(v),$$

we easily see that for \vec{H} (and H, also) to be regular it necessarily holds that |V| = n divides k|E| = km and so the common degree of the vertices of \vec{H} (and H) is $d = \frac{km}{n}$. Each column sum of M of \vec{H} is k-2and each row sum of M is $\frac{(k-2)m}{n}$.

When an oriented k-hypergraph \vec{H} contains all possible k-edges given some orientation, it is called a k-hypertournament. Notice that 2-hypertournaments are usual tournaments. The set \vec{E} of k-arcs is of size $\binom{n}{k}$.

It is known that the ranks of tournaments on n vertices are n or n-1. Here, the rank of a tournament means the rank of the adjacency matrix of the tournament. It is natural to ask what the ranks of k-hypergraphs and oriented k-hypergraphs are. Especially, one may ask what the ranks of regular k-hypertournaments are. However, the adjacency matrices of hypergraphs are nor easy to look at than the incidence matrices of them. So, we rather define the rank of a k-hypergraph as the rank of its corresponding incidence matrix.

It is helpful to look at the rank of some circulant matrices to know the rank of k-hypergraphs. Since circulant matrices $A = [a_{ij}]$ satisfy $a_{i+k,j+k} = a_{ij}$ for k = 1, 2, ..., n - 1, where the addition in the subscripts is considered in modulo n, they are completely determined by their first row. So, we denote a circulant matrix A by $A = \operatorname{circ}(a_{11}, a_{12}, ..., a_{1n})$ with its first row $(a_{11}, a_{12}, ..., a_{1n})$.

2. Rank of circulant matrices

In this section, we find the ranks of some circulant (0, 1)-matrices. Let P be the permutation matrix given by

$$P = E_{12} + E_{23} + \dots + E_{n-1\,n} + E_{n1},$$

where E_{ij} is the $n \times n$ unit matrix having exactly one 1 as the *ij*-entry and 0's for the other entries. Since the characteristic polynomial of Pis $x^n - 1$, the eigenvalues of P are the *n*th roots of unity in the complex plane.

Let A be a matrix and f(x) a polynomial. Then, for each eigenvalue ζ of A, $f(\zeta)$ is an eigenvalue of the matrix f(A).

Lemma 2.1. [1] Let $A = \operatorname{circ}(1, \ldots, 1, 0, \ldots, 0)$ be the $n \times n$ circulant matrix with the first row consisting of k 1's and n - k 0's. Then rank A = n if and only if n and k are relatively prime. In this case, det A = k.

Proof. The circulant matrix A is written as

$$A = I + P + P^2 + \dots + P^{k-1}.$$

For each eigenvalue ζ of P, $1 + \zeta + \zeta^2 + \cdots + \zeta^{k-1}$ is an eigenvalue of A. So, the determinant of A is

$$\det A = \prod_{j=1}^{n} (1 + \zeta_j + \zeta_j^2 + \dots + \zeta_j^{k-1}) = k \prod_{j=1}^{n-1} \frac{(1 - \zeta_j^k)}{(1 - \zeta_j)},$$

where $\zeta_j = \omega^j$ for j = 1, ..., n, and $\omega = e^{\frac{2\pi i}{n}}$ is the primitive *n*th root of unity.

Note that $\zeta_j^k = e^{\frac{2\pi i}{n}jk} = 1$ for some $j \neq n$ if and only if jk is a multiple of n, i.e., if and only if $j = \frac{qn}{d}$ for some $q = 1, 2, \ldots, d-1$, where $d = \gcd(n, k)$. That is, the multiplicity of 0 as an eigenvalue of A is d-1. Hence

$$\operatorname{rank} A = n - d + 1$$

and so det A = 0 if and only if gcd(n, k) > 1.

When gcd(n,k) = 1, the sets $\{\zeta_j^k | j = 1, 2, ..., n\}$ and $\{\zeta_j | j = 1, 2, ..., n\}$ are the same. Consequently we have det A = k.

Let S(n,k) be the set of $n \times n$ (0, 1)-matrices with row sums and column sums equal to k. Then, Lemma 2.1 provides an example of the following fact.

Lemma 2.2. [1] There exists a matrix $A \in S(n,k)$ with det $A = k \operatorname{gcd}(n,k)$.

Lemma 2.3. [4] If $A \in S(n,k)$, then $\overline{A} = J - A \in S(n, n-k)$ and

$$k \det \bar{A} = (n-k) \det A,$$

where J is the all 1's matrix.

Using Lemmas 2.1 and 2.3, we can easily derive the following result.

Corollary 2.4. Let gcd(n,k) = 1 and let $A \in S(n,k)$ be $A = circ(1,\ldots,1,0,\ldots,0)$. Then $\bar{A} = J - A$ is written as $\bar{A} = P^k + P^{k+1} + \cdots + P^{n-1}$, $\bar{A} \in S(n, n-k)$ and det $\bar{A} = n-k$.

Theorem 2.5. Let $A_1 = (1, 0, 1, 0, ..., 0) \in S(n, 2)$. Then A_1 is a singular matrix if and only if n is a multiple of 4.

Proof. The matrix A_1 is written as $A_1 = I + P^2$, where P is the permutation matrix defined before. Let ω denote the *n*th primitive root $e^{2\pi i/n}$ of unity. Then

$$\det A_1 = 2 \prod_{j=1}^{n-1} (1 + \omega^{2j}).$$

So det $A_1 = 0$ if and only if $\omega^{2j} = -1$ for some j = 1, 2, ..., n-1. The equation

$$\omega^{2j} = e^{i(\frac{4\pi j}{n})} = -1$$

implies that $\frac{4\pi j}{n} = \pi N_j$ for some odd integer N_j and hence 4|n.

Conversely, suppose that n = 4a for some positive integer a. Then we have $\omega^{2j} = e^{\pi i j/a} = -1$ for j = a and j = 3a so that det $A_1 = 0$. \Box

For l = 1, 2, ..., n - 2, let $A_l \in S(n, 2)$ be the circulant matrix with the first row (1, 0, ..., 0, 1, 0, ..., 0), where the second 1 appears in the (l+2)th component of the row vector : $A_l = \operatorname{circ}(1, 0, ..., 0, 1, 0, ..., 0)$.

Note that for $l = 1, 2, ..., \lfloor \frac{n}{2} \rfloor$, the matrices A_l and A_{n-2-l} are permutationally equivalent, i.e.,

$$A_l P^{n-1-l} = A_{n-2-l}$$
 or $A_l = A_{n-2-l} P^{l+1}$

So the determinants of A_l and A_{n-2-l} satisfy

$$\det A_l = \det A_{n-2-l} \cdot \det P^{l+1},$$

where

$$\det P^{l+1} = \prod_{j=1}^{n} \omega^{j(l+1)} = \omega^{(l+1)\frac{n(n+1)}{2}} = e^{i(l+1)(n+1)\pi}$$

is -1 if both n and l are even, and 1 otherwise. Hence,

$$\det A_{n-2-l} = \begin{cases} -\det A_l, & \text{if both } n \text{ and } l \text{ are even,} \\ \det A_l, & \text{otherwise.} \end{cases}$$

Theorem 2.6. Let $A_l = \operatorname{circ}(1, 0, \dots, 0, 1, 0, \dots, 0) \in S(n, 2)$, as above, for $l = 1, 2, \dots, \lfloor \frac{n}{2} \rfloor$. If A_l is singular, then n is even.

In fact, when l is even, A_l is singular if and only if n is even. When l is odd, let $l + 1 = 2^u v$ for some $u \ge 1$ and an odd $v \ge 1$. Then, A_l is singular if and only if $2^{u+1} | n$.

Proof. From Theorem 2.5, it is known that A_1 is singular if and only if 4|n. For $l = 2, 3, ..., \lfloor \frac{n}{2} \rfloor$, $A_l = I + P^{l+1}$ and

det
$$A_l = 2 \prod_{j=1}^{n-1} (1 + \omega^{(l+1)j}).$$

So det $A_l = 0$ if and only if for some j,

$$\omega^{(l+1)j} = e^{i(\frac{2\pi(l+1)j}{n})} = -1.$$

That is, $\frac{2\pi(l+1)j}{n} = \pi N_j$ for some odd integer N_j . So $2(l+1)j = nN_j$, i.e., n is even.

Suppose that l is even. If n = 2a for some positive integer a, then for j = a, $\frac{2\pi(l+1)j}{n} = (l+1)\pi$ and so $\omega^{(l+1)j} = -1$, i.e., det A = 0. Hence when l is even, A_l is singular if and only if n is even.

Now suppose that l is odd. Write $l + 1 = 2^{u}v$, where $u \ge 1$ is an integer and $v \ge 1$ is an odd integer. If det $A_{l} = 0$, then $\frac{2\pi(l+1)j}{n} = \frac{\pi 2^{u+1}vj}{n} = \pi N_{j}$ for some odd N_{j} implies that $2^{u+1}|n$. Conversely, if $2^{u+1}|n$, n is written $n = 2^{u+1}b$ for some positive integer b. Then $\frac{2\pi(l+1)j}{n} = \frac{\pi vj}{b}$. So for $j = b, 3b, \ldots, (2^{u+1}-1)b$, we have $\omega^{(l+1)j} = -1$ and hence det $A_{l} = 0$.

Corollary 2.7. If n is odd, then the $n \times n$ circulant matrix A_l is nonsingular for all l = 1, 2, ..., n - 2.

Theorem 2.8. Let $A = \text{circ}(-1, 1, \dots, 1, 0, \dots, 0)$, where -1 appears once, 1 appears k - 1 times and 0 appears n - k times. Then rank A = n for all $n \ge 2$ and $3 \le k \le n$.

Proof. The matrix A is written $A = -I + P + P^2 + \cdots + P^{k-1}$. Let $\zeta_j = \omega^j$, where ω is the primitive *n*th root of unity. Then the determinant of A is

$$\det A = \prod_{j=1}^{n} (-1 + \zeta_j + \zeta_j^2 + \dots + \zeta_j^{k-1}) = (k-2) \prod_{j=1}^{n-1} (\frac{1-\zeta_j^k}{1-\zeta_j} - 2).$$

So det A = 0 if and only if $\frac{1-\zeta_j^k}{1-\zeta_j} - 2 = 0$ for some $j \in \{1, 2, \dots, n-1\}$. That is, $\zeta_j \neq 1$ is a common root of the equations

$$1 - z^k - 2(1 - z) = 0,$$
 $|z| = 1.$

These together imply that

$$|z - \frac{1}{2}| = |\frac{1}{2}z^k| = \frac{1}{2}.$$

The only complex number z satisfying both $|z - \frac{1}{2}| = \frac{1}{2}$ and |z| = 1 is z = 1. So det $A \neq 0$, and hence rank A = n.

3. Rank of *k*-hypergraphs

Now consider the (non-signed) vertex-edge incidence matrix M of a k-hypergraph H on n vertices and m k-edges, which is an $n \times m$ (0, 1)matrix. We define the rank of a k-hypergraph H as the rank of the corresponding incidence matrix M. We want to find a condition for the incidence matrices of k-hypergraphs to be of rank n. If m < n, then the rank of M is trivially less than n. We assume $m \ge n$. Then rank $M \le$ n. If n and k are relatively prime and if the incidence matrix includes n columns $e = (1, 1, \ldots, 1, 0, \ldots, 0)^T$ and $P^j e$ for $j = 1, \ldots, n-1$, then by Lemma 2.1, we see that these columns are linearly independent and hence rank M = n.

Theorem 3.1. Let H be a complete k-hypergraph on n vertices. Then the incidence matrix M of H contains a submatrix of size $n \times n$ whose determinant is $k \operatorname{gcd}(n, k) \neq 0$ and so rank M = n.

Proof. The fact that H is a complete k-hypergraph means that H contains all the possible k-edges on n vertex set. So the incidence matrix M contains all the possible (0,1) n-tuples with k 1's and n-k 0's as its columns and so M is of size $n \times \binom{n}{k}$. By Lemma 2.2, it is immediate that M contains a submatrix $A \in S(n,k)$ with det $A = k \gcd(n,k)$, and hence rank M = n.

Note that in the theorem if gcd(n,k) = 1, we can pick *n* columns, $e = (1, 1, ..., 1, 0, ..., 0)^T$ and $P^j e$ for j = 1, ..., n-1, which together make the $n \times n$ submatrix *B* of *M*, the transpose B^T of which is the circulant matrix circ(1, ..., 1, 0, ..., 0). So by Lemma 2.1, *M* contains a submatrix whose determinant is *k*.

For an (0,1) *n*-tuple *e*, there exists a positive integer *q* such that $P^q e = e$. We define the smallest one among such *q*'s the order of *e* under *P*. Define e_i and e_j to be equivalent under *P* if $e_i = P^q e_j$ for some integer *q*. We can, then, partition the set of all (0,1) *n*-tuples into *t* equivalence classes of the equivalence relation *P*. Let $\{e_1, e_2, \ldots, e_t\}$ be the representatives of the equivalence classes of *P* and let the order of e_j be q_j for $j = 1, 2, \ldots, t$. Since some (0,1) *n*-tuples have orders *n*, we may assume that $q_j = n$ for $j = 1, 2, \ldots, s$, $s \leq n$. Then the (0, 1)-incidence matrix *M* of a complete *k*-hypergraph *H* can be written, by

interchanging the columns if necessary, as follows:

$$M = [A_1 A_2 \cdots A_s A_{s+1} \cdots A_t],$$

where each A_j is an $n \times q_j$ circulant submatrix, whose first column is e_j and xth column is $P^{x-1}e_j$ for $x = 2, \ldots, q_j$ and $j = 1, 2, \ldots, t$. In particular, A_j is an $n \times n$ circulant matrix for $j = 1, 2, \ldots, s$.

Theorem 3.2. Let $n \ge 2$ and $3 \le k \le n-1$. If $n | \binom{n}{k}$, then there exists a regular k-hypertournament matrix M. Furthermore, every regular k-hypertournament matrix M has rank M = n.

Proof. We here just outline the proof. For the details, refer to [2]. Let H be a complete k-hypergraph on n vertices and \tilde{M} the incidence matrix of H. Since $n | \binom{n}{k}$, $r = \frac{1}{n} \binom{n}{k}$ is an integer. So the (0,1)-matrix \tilde{M} of size $n \times \binom{n}{k}$ can be written as

$$M = [B_1 B_2 \cdots B_s B_{s+1} \cdots B_r],$$

where each B_j is $n \times n$ block submatrix for j = 1, 2, ..., r.

Since the rank of a matrix is not changed with the rearrangement of the columns of the matrix, we may assume that, with circulant matrices A_i 's mentioned above,

$$\tilde{M} = [B_1 B_2 \cdots B_s B_{s+1} \cdots B_r] = [A_1 A_2 \cdots A_s A_{s+1} \cdots A_t],$$

where t is the number of the equivalence classes under P and $A_i = B_i$ for i = 1, 2, ..., s, and

$$[A_{s+1} \cdots A_t] = [B_{s+1} \cdots B_r].$$

Also, since all of the A_i 's are circulant, we may assume that the diagonal entries of each $n \times n$ submatrix B_j are all 1's. In particular, we may assume that $B_1 = A_1 = \operatorname{circ}(1, \ldots, 1, 0, \ldots, 0) \in S(n, k)$.

Putting negative signs on these diagonal entries of all the blocks, we obtain a (0, 1, -1) regular k-hypertournament matrix M. The first block B_1 is the matrix described in Theorem 2.8, and it is nonsingular and so rank M = n.

References

- [1] M. Grady and M. Newman, *The Geometry of an Interchange: Minimal Matrices and Circulants*, Linear Algebra and Its Appl. **262** (1997), 11–25.
- [2] Y. Koh and S. Ree, On k-Hypertournament Matrices, Linear Algebra and Its Applications 373 (2003), 183–195.
- [3] Y. Koh and S. Ree, Adjacency and Laplacian Matrices of Oriented k-Hypergraphs (2004), submitted.
- [4] C.-K. Li, J. S.-J. Lin and L. Rodman, Determinants of Certain Classes Of Zero-One Matrices With Equal Line Sums, Rocky Mountain Math. Jour. 29 (1999), no. 43, 1363–1385.

Youngmee Koh Department of Mathematics The University of Suwon Kyunggi-do, 445-743, Korea *E-mail*: ymkoh@suwon.ac.kr

Sangwook Ree Department of Mathematics The University of Suwon Kyunggi-do, 445-743, Korea *E-mail*: swree@suwon.ac.kr