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RANKS OF k-HYPERGRAPHS

Youngmee Koh and Sangwook Ree

Abstract. We define the incidence matrices of oriented and nonori-

ented k-hypergraphs, respectively. We discuss the ranks of some
circulant matrices and show that the rank of the incidence matrices

of oriented and nonoriented k-hypergraphs H are n under a certain

condition on the k-edge set or k-arc set of H.

1. Hypergraphs

A hypergraph H = (V,E) is a pair of sets : one is the vertex set
V = {v1, . . . , vn} and the other is the set E = {e1, . . . , em} of so-called
hyperedges which are subsets of V . A hyperedge is called a k-edge
if it is a k-subset of V . We call a hypergraph having only k-edges a
k-hypergraph. Notice that a 2-hypergraph is a usual graph. For a k-
hypergraph H, the incidence matrix of H is defined as a (0, 1)-matrix
of size n × m such that the ij-entry is 1 if vertex vi is contained in
k-edge ej and 0 otherwise.

An orientation of a k-edge is a linear arrangement of the vertices
of the edge. If a k-edge is given an orientation, then it is called a
k-arc. If all of the hyperedges of a k-hypergraph are k-arcs, then the
k-hypergraph is said oriented. Given an oriented k-hypergraph ~H =
(V, ~E) with |V | = n and | ~E| = m, we define the incidence matrix
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M = M( ~H) = [ mij ] of ~H as an n×m (0, 1,−1)-matrix by

mij =


1 if vertex vi is contained in k-arc ej ,

but not as the last element,
−1 if vi is contained in ej as the last element,
0 if vi is not contained in ej .

For each vertex v of a k-hypergraph H, we define the degree of v
as the number of k-edges of H containing v. A k-hypergraph is said
regular if all the vertices have the same degree. We say an oriented k-
hypergraph ~H is regular if the degrees of the vertices are all equal and
the number of k-arcs containing any given vertex as the last element
is a constant. From the fact that

k|E| =
∑
v∈V

deg(v),

we easily see that for ~H (and H, also) to be regular it necessarily holds
that |V | = n divides k|E| = km and so the common degree of the
vertices of ~H (and H) is d = km

n . Each column sum of M of ~H is k−2
and each row sum of M is (k−2)m

n .
When an oriented k-hypergraph ~H contains all possible k-edges

given some orientation, it is called a k-hypertournament. Notice that
2-hypertournaments are usual tournaments. The set ~E of k-arcs is of
size

(
n
k

)
.

It is known that the ranks of tournaments on n vertices are n or
n−1. Here, the rank of a tournament means the rank of the adjacency
matrix of the tournament. It is natural to ask what the ranks of k-
hypergraphs and oriented k-hypergraphs are. Especially, one may ask
what the ranks of regular k-hypertournaments are. However, the adja-
cency matrices of hypergraphs are nor easy to look at than the incidence
matrices of them. So, we rather define the rank of a k-hypergraph as
the rank of its corresponding incidence matrix.

It is helpful to look at the rank of some circulant matrices to know
the rank of k-hypergraphs. Since circulant matrices A = [ aij ] sat-
isfy ai+k,j+k = aij for k = 1, 2, . . . , n − 1, where the addition in
the subscripts is considered in modulo n, they are completely de-
termined by their first row. So, we denote a circulant matrix A by
A = circ(a11, a12, . . . , a1n) with its first row (a11, a12, . . . , a1n).
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2. Rank of circulant matrices

In this section, we find the ranks of some circulant (0, 1)-matrices.
Let P be the permutation matrix given by

P = E12 + E23 + · · ·+ En−1 n + En1,

where Eij is the n×n unit matrix having exactly one 1 as the ij-entry
and 0’s for the other entries. Since the characteristic polynomial of P
is xn−1, the eigenvalues of P are the nth roots of unity in the complex
plane.

Let A be a matrix and f(x) a polynomial. Then, for each eigenvalue
ζ of A, f(ζ) is an eigenvalue of the matrix f(A).

Lemma 2.1. [1] Let A = circ(1, . . . , 1, 0, . . . , 0) be the n×n circu-
lant matrix with the first row consisting of k 1’s and n − k 0’s. Then
rank A = n if and only if n and k are relatively prime. In this case,
detA = k.

Proof. The circulant matrix A is written as

A = I + P + P 2 + · · ·+ P k−1.

For each eigenvalue ζ of P , 1 + ζ + ζ2 + · · ·+ ζk−1 is an eigenvalue of
A. So, the determinant of A is

det A =
n∏

j=1

(1 + ζj + ζ2
j + · · ·+ ζk−1

j ) = k
n−1∏
j=1

(1− ζk
j )

(1− ζj)
,

where ζj = ωj for j = 1, . . . , n, and ω = e
2πi
n is the primitive nth root

of unity.
Note that ζk

j = e
2πi
n jk = 1 for some j 6= n if and only if jk is a

multiple of n, i.e., if and only if j = qn
d for some q = 1, 2, . . . , d − 1,

where d = gcd(n, k). That is, the multiplicity of 0 as an eigenvalue of
A is d− 1. Hence

rank A = n− d + 1

and so det A = 0 if and only if gcd(n, k) > 1.
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When gcd(n, k) = 1, the sets {ζk
j | j = 1, 2, . . . , n } and {ζj | j =

1, 2, . . . , n } are the same. Consequently we have det A = k. �

Let S(n, k) be the set of n × n (0, 1)-matrices with row sums and
column sums equal to k. Then, Lemma 2.1 provides an example of the
following fact.

Lemma 2.2. [1] There exists a matrix A ∈ S(n, k) with detA =
k gcd(n, k).

Lemma 2.3. [4] If A ∈ S(n, k), then Ā = J −A ∈ S(n, n− k) and

k det Ā = (n− k) detA,

where J is the all 1’s matrix.

Using Lemmas 2.1 and 2.3, we can easily derive the following result.

Corollary 2.4. Let gcd(n, k) = 1 and let A ∈ S(n, k) be A =
circ(1, . . . , 1, 0, . . . , 0). Then Ā = J −A is written as Ā = P k +P k+1 +
· · ·+ Pn−1, Ā ∈ S(n, n− k) and det Ā = n− k.

Theorem 2.5. Let A1 = (1, 0, 1, 0, . . . , 0) ∈ S(n, 2). Then A1 is a
singular matrix if and only if n is a multiple of 4.

Proof. The matrix A1 is written as A1 = I + P 2, where P is the
permutation matrix defined before. Let ω denote the nth primitive
root e2πi/n of unity. Then

detA1 = 2
n−1∏
j=1

(1 + ω2j).

So detA1 = 0 if and only if ω2j = −1 for some j = 1, 2, . . . , n− 1. The
equation

ω2j = ei( 4πj
n ) = −1

implies that 4πj
n = πNj for some odd integer Nj and hence 4|n.

Conversely, suppose that n = 4a for some positive integer a. Then
we have ω2j = eπij/a = −1 for j = a and j = 3a so that det A1 = 0. �
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For l = 1, 2, . . . , n− 2, let Al ∈ S(n, 2) be the circulant matrix with
the first row (1, 0, . . . , 0, 1, 0, . . . , 0), where the second 1 appears in the
(l+2)th component of the row vector : Al = circ(1, 0, . . . , 0, 1, 0, . . . , 0).

Note that for l = 1, 2, . . . , bn
2 c, the matrices Al and An−2−l are

permutationally equivalent, i.e.,

AlP
n−1−l = An−2−l or Al = An−2−lP

l+1.

So the determinants of Al and An−2−l satisfy

det Al = detAn−2−l · det P l+1,

where

det P l+1 =
n∏

j=1

ωj(l+1) = ω(l+1)
n(n+1)

2 = ei(l+1)(n+1)π

is −1 if both n and l are even, and 1 otherwise. Hence,

detAn−2−l =
{ −detAl, if both n and l are even,

detAl, otherwise.

Theorem 2.6. Let Al = circ(1, 0, . . . , 0, 1, 0, . . . , 0) ∈ S(n, 2), as
above, for l = 1, 2, . . . , bn

2 c. If Al is singular, then n is even.
In fact, when l is even, Al is singular if and only if n is even. When

l is odd, let l + 1 = 2uv for some u ≥ 1 and an odd v ≥ 1. Then, Al is
singular if and only if 2u+1 |n.

Proof. From Theorem 2.5, it is known that A1 is singular if and
only if 4|n. For l = 2, 3, . . . , bn

2 c, Al = I + P l+1 and

det Al = 2
n−1∏
j=1

(1 + ω(l+1)j).

So detAl = 0 if and only if for some j,

ω(l+1)j = ei(
2π(l+1)j

n ) = −1.



206 Y. Koh and S. Ree

That is, 2π(l+1)j
n = πNj for some odd integer Nj . So 2(l + 1)j = nNj ,

i.e., n is even.
Suppose that l is even. If n = 2a for some positive integer a, then

for j = a, 2π(l+1)j
n = (l + 1)π and so ω(l+1)j = −1, i.e., detA = 0.

Hence when l is even, Al is singular if and only if n is even.
Now suppose that l is odd. Write l + 1 = 2uv, where u ≥ 1 is an

integer and v ≥ 1 is an odd integer. If detAl = 0, then 2π(l+1)j
n =

π2u+1vj
n = πNj for some odd Nj implies that 2u+1|n. Conversely,

if 2u+1|n, n is written n = 2u+1b for some positive integer b. Then
2π(l+1)j

n = πvj
b . So for j = b, 3b, . . . , (2u+1 − 1)b, we have ω(l+1)j = −1

and hence det Al = 0. �

Corollary 2.7. If n is odd, then the n × n circulant matrix Al is
nonsingular for all l = 1, 2, . . . , n− 2.

Theorem 2.8. Let A = circ(−1, 1, · · · , 1, 0, · · · , 0), where −1 ap-
pears once, 1 appears k − 1 times and 0 appears n − k times. Then
rank A = n for all n ≥ 2 and 3 ≤ k ≤ n.

Proof. The matrix A is written A = −I + P + P 2 + · · · + P k−1.
Let ζj = ωj , where ω is the primitive nth root of unity. Then the
determinant of A is

detA =
n∏

j=1

(−1 + ζj + ζ2
j + · · ·+ ζk−1

j ) = (k − 2)
n−1∏
j=1

(
1− ζk

j

1− ζj
− 2).

So detA = 0 if and only if 1−ζk
j

1−ζj
− 2 = 0 for some j ∈ {1, 2, . . . , n− 1}.

That is, ζj 6= 1 is a common root of the equations

1− zk − 2(1− z) = 0, |z| = 1.

These together imply that

|z − 1
2
| = |1

2
zk| = 1

2
.

The only complex number z satisfying both |z − 1
2 | = 1

2 and |z| = 1 is
z = 1. So det A 6= 0, and hence rank A = n. �
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3. Rank of k-hypergraphs

Now consider the (non-signed) vertex-edge incidence matrix M of a
k-hypergraph H on n vertices and m k-edges, which is an n×m (0, 1)-
matrix. We define the rank of a k-hypergraph H as the rank of the
corresponding incidence matrix M . We want to find a condition for the
incidence matrices of k-hypergraphs to be of rank n. If m < n, then the
rank of M is trivially less than n. We assume m ≥ n. Then rankM ≤
n. If n and k are relatively prime and if the incidence matrix includes
n columns e = (1, 1, . . . , 1, 0, . . . , 0)T and P je for j = 1, . . . , n−1, then
by Lemma 2.1, we see that these columns are linearly independent and
hence rank M = n.

Theorem 3.1. Let H be a complete k-hypergraph on n vertices.
Then the incidence matrix M of H contains a submatrix of size n× n
whose determinant is k gcd(n, k) 6= 0 and so rank M = n.

Proof. The fact that H is a complete k-hypergraph means that H
contains all the possible k-edges on n vertex set. So the incidence
matrix M contains all the possible (0,1) n-tuples with k 1’s and n− k
0’s as its columns and so M is of size n ×

(
n
k

)
. By Lemma 2.2, it is

immediate that M contains a submatrix A ∈ S(n, k) with det A =
k gcd(n, k), and hence rank M = n. �

Note that in the theorem if gcd(n, k) = 1, we can pick n columns,
e = (1, 1, . . . , 1, 0, . . . , 0)T and P je for j = 1, . . . , n− 1, which together
make the n × n submatrix B of M , the transpose BT of which is the
circulant matrix circ(1, . . . , 1, 0, . . . , 0). So by Lemma 2.1, M contains
a submatrix whose determinant is k.

For an (0, 1) n-tuple e, there exists a positive integer q such that
P qe = e. We define the smallest one among such q’s the order of e
under P . Define ei and ej to be equivalent under P if ei = P qej for
some integer q. We can, then, partition the set of all (0, 1) n-tuples into
t equivalence classes of the equivalence relation P . Let {e1, e2, . . . , et}
be the representatives of the equivalence classes of P and let the order
of ej be qj for j = 1, 2, . . . , t. Since some (0, 1) n-tuples have orders n,
we may assume that qj = n for j = 1, 2, . . . , s, s ≤ n. Then the (0, 1)-
incidence matrix M of a complete k-hypergraph H can be written, by
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interchanging the columns if necessary, as follows:

M = [ A1 A2 · · · As As+1 · · · At ] ,

where each Aj is an n × qj circulant submatrix, whose first column is
ej and xth column is P x−1ej for x = 2, . . . , qj and j = 1, 2, . . . , t. In
particular, Aj is an n× n circulant matrix for j = 1, 2, . . . , s.

Theorem 3.2. Let n ≥ 2 and 3 ≤ k ≤ n − 1. If n|
(
n
k

)
, then there

exists a regular k-hypertournament matrix M . Furthermore, every
regular k-hypertournament matrix M has rank M = n.

Proof. We here just outline the proof. For the details, refer to [2].
Let H be a complete k-hypergraph on n vertices and M̃ the incidence
matrix of H. Since n|

(
n
k

)
, r = 1

n

(
n
k

)
is an integer. So the (0,1)-matrix

M̃ of size n×
(
n
k

)
can be written as

M̃ = [ B1 B2 · · · Bs Bs+1 · · · Br ] ,

where each Bj is n× n block submatrix for j = 1, 2, . . . , r.
Since the rank of a matrix is not changed with the rearrangement of

the columns of the matrix, we may assume that, with circulant matrices
Ai’s mentioned above,

M̃ = [ B1 B2 · · · Bs Bs+1 · · · Br ] = [ A1 A2 · · · As As+1 · · · At ] ,

where t is the number of the equivalence classes under P and Ai = Bi

for i = 1, 2, . . . , s, and

[ As+1 · · · At ] = [ Bs+1 · · · Br ] .

Also, since all of the Ai’s are circulant, we may assume that the diag-
onal entries of each n × n submatrix Bj are all 1’s. In particular, we
may assume that B1 = A1 = circ(1, . . . , 1, 0, . . . , 0) ∈ S(n, k).

Putting negative signs on these diagonal entries of all the blocks,
we obtain a (0, 1,−1) regular k-hypertournament matrix M . The first
block B1 is the matrix described in Theorem 2.8, and it is nonsingular
and so rank M = n. �
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