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RANKS OF k-HYPERGRAPHS

YOUNGMEE KOH AND SANGWOOK REE

ABSTRACT. We define the incidence matrices of oriented and nonori-
ented k-hypergraphs, respectively. We discuss the ranks of some
circulant matrices and show that the rank of the incidence matrices
of oriented and nonoriented k-hypergraphs H are n under a certain
condition on the k-edge set or k-arc set of H.

1. Hypergraphs

A hypergraph H = (V, E) is a pair of sets: one is the vertex set
V ={v1,...,v,} and the other is the set £ = {e1, ..., e, } of so-called
hyperedges which are subsets of V. A hyperedge is called a k-edge
if it is a k-subset of V. We call a hypergraph having only k-edges a
k-hypergraph. Notice that a 2-hypergraph is a usual graph. For a k-
hypergraph H, the incidence matrix of H is defined as a (0, 1)-matrix
of size n x m such that the ij-entry is 1 if vertex v; is contained in
k-edge e; and 0 otherwise.

An orientation of a k-edge is a linear arrangement of the vertices
of the edge. If a k-edge is given an orientation, then it is called a
k-arc. 1f all of the hyperedges of a k-hypergraph are k-arcs, then the
k-hypergraph is said oriented. Given an oriented k-hypergraph H =
(V,E) with |V| = n and |E| = m, we define the incidence matrix
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M= MH) = [m; ] of H as an n x m (0,1, —1)-matrix by
1 if vertex v; is contained in k-arc e;,

but not as the last element,
M —
“ —1 if v; is contained in e; as the last element,

0 if v; is not contained in e;.

For each vertex v of a k-hypergraph H, we define the degree of v
as the number of k-edges of H containing v. A k-hypergraph is said
regular if all the vertices have the same degree. We say an oriented k-
hypergraph H is regular if the degrees of the vertices are all equal and
the number of k-arcs containing any given vertex as the last element
is a constant. From the fact that

K| = deg(v),

veV

we easily see that for H (and H, also) to be regular it necessarily holds
that |V| = n divides k|E| = km and so the common degree of the

vertices of H (and H) is d = km Each column sum of M of Hisk—2

and each row sum of M is (k_%

When an oriented k-hypergraph H contains all possible k-edges
given some orientation, it is called a k-hypertournament. Notice that
2-hypertournaments are usual tournaments. The set E of k-arcs is of
size (2)

It is known that the ranks of tournaments on n vertices are n or
n—1. Here, the rank of a tournament means the rank of the adjacency
matrix of the tournament. It is natural to ask what the ranks of k-
hypergraphs and oriented k-hypergraphs are. Especially, one may ask
what the ranks of regular k-hypertournaments are. However, the adja-
cency matrices of hypergraphs are nor easy to look at than the incidence
matrices of them. So, we rather define the rank of a k-hypergraph as
the rank of its corresponding incidence matrix.

It is helpful to look at the rank of some circulant matrices to know
the rank of k-hypergraphs. Since circulant matrices A = [a;; ] sat-
isty aj4r j+r = ai; for B = 1,2,...,n — 1, where the addition in
the subscripts is considered in modulo n, they are completely de-
termined by their first row. So, we denote a circulant matrix A by
A = circ(air, a12, . . ., a1,) with its first row (a11, a12,...,a1,).
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2. Rank of circulant matrices

In this section, we find the ranks of some circulant (0, 1)-matrices.
Let P be the permutation matrix given by

P=Fig+FEyz3+---+E,_1,+ FEp,

where Fj;; is the n x n unit matriz having exactly one 1 as the ¢j-entry
and 0’s for the other entries. Since the characteristic polynomial of P
is 2™ — 1, the eigenvalues of P are the nth roots of unity in the complex
plane.

Let A be a matrix and f(z) a polynomial. Then, for each eigenvalue
¢ of A, f({) is an eigenvalue of the matrix f(A).

Lemma 2.1. [1] Let A = circ(1,...,1,0,...,0) be the n x n circu-

lant matrix with the first row consisting of k 1’s and n — k 0’s. Then
rank A = n if and only if n and k are relatively prime. In this case,

det A = k.

Proof. The circulant matrix A is written as
A=T1+P+ P> 4. ...+ P L

For each eigenvalue ¢ of P, 1+ + (2 +---+ (¥ 1 is an eigenvalue of
A. So, the determinant of A is

- T A=)
det A=J[A+G+G+ -+ =k]] —%=

1 o (1=6)
where (; =w’ for j=1,...,n, and w = e’ is the primitive nth root
of unity. .
Note that (j’? = e%'ik = 1 for some j #* n if and only if jk is a
multiple of n, i.e., if and only if j = 4 for some ¢ = 1,2,...,d — 1,

where d = ged(n, k). That is, the multiplicity of 0 as an eigenvalue of
Ais d—1. Hence
rank A=n—d+1

and so det A = 0 if and only if ged(n, k) > 1.
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When ged(n, k) = 1, the sets {Cf lj =1,2,...,n} and {(|j =
1,2,...,n} are the same. Consequently we have det A = k. O

Let S(n,k) be the set of n x n (0,1)-matrices with row sums and
column sums equal to k. Then, Lemma 2.1 provides an example of the
following fact.

Lemma 2.2. [1] There exists a matrix A € S(n, k) with det A =
kged(n, k).

Lemma 2.3. [4] If A€ S(n,k), then A=J— A€ S(n,n— k) and
kdet A= (n— k)det A,

where J is the all 1’s matrix.
Using Lemmas 2.1 and 2.3, we can easily derive the following result.

Corollary 2.4. Let ged(n,k) = 1 and let A € S(n,k) be A =
cire(1,...,1,0,...,0). Then A = J — A is written as A = P¥ 4+ PF+1
co Pl A€ S(nyn—k) and det A =n — k.

Theorem 2.5. Let A1 = (1,0,1,0,...,0) € S(n,2). Then A, is a
singular matrix if and only if n is a multiple of 4.

Proof. The matrix A; is written as A; = I + P2, where P is the
permutation matrix defined before. Let w denote the nth primitive

root €2™/™ of unity. Then
n—1
det Ay =2 [ (1 +w¥).
j=1

So det A; = 0 if and only if w? = —1 for some j = 1,2,...,n—1. The
equation

w =) = 1

implies that % = wN; for some odd integer N; and hence 4|n.
Conversely, suppose that n = 4a for some positive integer a. Then
we have w? = e™/% = —1 for j = a and j = 3a so that det A, = 0.0



Ranks of k-Hypergraphs 205

Forl=1,2,...,n—2,let A; € S(n,2) be the circulant matrix with
the first row (1,0,...,0,1,0,...,0), where the second 1 appears in the
(I4-2)th component of the row vector: A; = circ(1,0,...,0,1,0,...,0).

Note that for [ = 1,2,...,|%], the matrices A; and A, _»_; are
permutationally equivalent, i.e.,

Alpn_l_l = An—2—l or Al = An_Q_ZPH_l.
So the determinants of A; and A,,_o_; satisfy
det A; = det A,,_o_; - det P'T1,

where

det P! — ij(l-i—l) _ w(lﬂ)% _ 6i(l+1)(n+1)7r
j=1

is —1 if both n and [ are even, and 1 otherwise. Hence,

—det A;, if both n and [ are even,

det A,,_2_; = .
det A, otherwise.

Theorem 2.6. Let A; = circ(1,0,...,0,1,0,...,0) € S(n,2), as
above, for l =1,2,...,|5]. If A; is singular, then n is even.

In fact, when [ is even, A; is singular if and only if n is even. When
l is odd, let | + 1 = 2%v for some u > 1 and an odd v > 1. Then, A; is
singular if and only if 2“*1 |n.

Proof. From Theorem 2.5, it is known that A; is singular if and
only if 4|n. For [ =2,3,...,|2], A, =1+ P'*! and

n—1
det A; =2 H (1 + w7y,
j=1

So det A; = 0 if and only if for some j,

WUHDI — (PR
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That is, w = wN; for some odd integer N;. So 2(l +1)j = nNj,
i.e., n is even.

Suppose that [ is even. If n = 2a for some positive integer a, then
for j = a, MTH)J = (I + )m and so w17 = —1, ie., det A = 0.
Hence when [ is even, A; is singular if and only if n is even.

Now suppose that [ is odd. Write [ + 1 = 2%v, where u > 1 is an

integer and v > 1 is an odd integer. If det A; = 0, then w =
@ = 7N; for some odd N; implies that 2“T1|n. Conversely,
if 24t |n, n is written n = 2%*1b for some positive integer b. Then
w = %j. So for j = b,3b,..., (2"t — 1)b, we have w(+1)J = —1
and hence det A; = 0. O

Corollary 2.7. If n is odd, then the n X n circulant matrix A; is
nonsingular for alll =1,2,...,n — 2.

Theorem 2.8. Let A = circ(—1,1,---,1,0,---,0), where —1 ap-
pears once, 1 appears k — 1 times and 0 appears n — k times. Then
rank A=mn for alln > 2 and 3 < k <n.

Proof. The matrix A is written A = —] + P + P? 4+ ... 4+ Pk—1,
Let (; = w’, where w is the primitive nth root of unity. Then the
determinant of A is

n n—1 k
det A=J[(-1+¢G+G+ -+ H=E-2) [[(—% -2
j=1 j=1 1—¢
ik
So det A = 0 if and only if 1_2 —2 =0 for some j € {1,2,...,n—1}.

That is, ¢ # 1 is a common root of the equations
1—2"—2(1—-2)=0, 2| = 1.

These together imply that

1 1, 1
|Z—§|— 97 |—§-
The only complex number z satisfying both |z — 3| = 1 and |z| =1 is

z=1. So det A # 0, and hence rank A = n. OJ
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3. Rank of k-hypergraphs

Now consider the (non-signed) vertex-edge incidence matrix M of a
k-hypergraph H on n vertices and m k-edges, which is an n x m (0, 1)-
matrix. We define the rank of a k-hypergraph H as the rank of the
corresponding incidence matrix M. We want to find a condition for the
incidence matrices of k-hypergraphs to be of rank n. If m < n, then the
rank of M is trivially less than n. We assume m > n. Then rank M <
n. If n and k are relatively prime and if the incidence matrix includes
n columns e = (1,1,...,1,0,...,0)T and P/e for j = 1,...,n—1, then
by Lemma 2.1, we see that these columns are linearly independent and
hence rank M = n.

Theorem 3.1. Let H be a complete k-hypergraph on n vertices.
Then the incidence matrix M of H contains a submatrix of size n X n
whose determinant is k ged(n, k) # 0 and so rank M = n.

Proof. The fact that H is a complete k-hypergraph means that H
contains all the possible k-edges on n vertex set. So the incidence
matrix M contains all the possible (0,1) n-tuples with k& 1’s and n — k
0’s as its columns and so M is of size n x (Z) By Lemma 2.2, it is
immediate that M contains a submatrix A € S(n,k) with det A =
k ged(n, k), and hence rank M = n. O

Note that in the theorem if ged(n, k) = 1, we can pick n columns,
e=(1,1,...,1,0,...,0)7 and P’e for j = 1,...,n — 1, which together
make the n x n submatrix B of M, the transpose BT of which is the
circulant matrix circ(1,...,1,0,...,0). So by Lemma 2.1, M contains
a submatrix whose determinant is k.

For an (0,1) n-tuple e, there exists a positive integer ¢ such that
Pie = e. We define the smallest one among such ¢’s the order of e
under P. Define e; and e; to be equivalent under P if e; = Pe; for
some integer . We can, then, partition the set of all (0, 1) n-tuples into
t equivalence classes of the equivalence relation P. Let {e1,ea,..., e}
be the representatives of the equivalence classes of P and let the order
of e; be g; for j =1,2,...,t. Since some (0, 1) n-tuples have orders n,
we may assume that ¢; =n for j =1,2,...,s, s <n. Then the (0, 1)-
incidence matrix M of a complete k-hypergraph H can be written, by
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interchanging the columns if necessary, as follows:
M=[A; Ay - A Agyr - A,

where each A; is an n X ¢; circulant submatrix, whose first column is
e; and xth column is P*"le; for x = 2,...,¢; and j = 1,2,...,¢t. In
particular, A4; is an n x n circulant matrix for j =1,2,...,s.

Theorem 3.2. Letn >2and 3 <k <n—1. Ifn\(Z), then there
exists a regular k-hypertournament matrix M. Furthermore, every
regular k-hypertournament matrix M has rank M = n.

Proof. We here just outline the proof. For the details, refer to [2].
Let H be a complete k-hypergraph on n vertices and M the incidence
1(n

matrix of H. Since n|(}), 7 = +(}) is an integer. So the (0,1)-matrix

M of size n x (Z) can be written as

M=[Bi By - By Bery --- B, ],

where each B; is n x n block submatrix for j =1,2,...,r.

Since the rank of a matrix is not changed with the rearrangement of
the columns of the matrix, we may assume that, with circulant matrices
A;’s mentioned above,

M=[By By --- BsBey1 - By ] =[A1 Ay -+ Ay Agq -+ Ay ],

where t is the number of the equivalence classes under P and A; = B;
fort=1,2,...,s, and

[Agy1 - Ay ]=[Bspr -+ By .

Also, since all of the A;’s are circulant, we may assume that the diag-
onal entries of each n x n submatrix B; are all 1’s. In particular, we
may assume that B; = A; = cire(1,...,1,0,...,0) € S(n, k).

Putting negative signs on these diagonal entries of all the blocks,
we obtain a (0,1, —1) regular k-hypertournament matrix M. The first
block Bj is the matrix described in Theorem 2.8, and it is nonsingular
and so rank M = n. 0
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