# RANKS OF $k$-HYPERGRAPHS 

Youngmee Koh and Sangwook Ree


#### Abstract

We define the incidence matrices of oriented and nonoriented $k$-hypergraphs, respectively. We discuss the ranks of some circulant matrices and show that the rank of the incidence matrices of oriented and nonoriented $k$-hypergraphs $H$ are $n$ under a certain condition on the $k$-edge set or $k$-arc set of $H$.


## 1. Hypergraphs

A hypergraph $H=(V, E)$ is a pair of sets: one is the vertex set $V=\left\{v_{1}, \ldots, v_{n}\right\}$ and the other is the set $E=\left\{e_{1}, \ldots, e_{m}\right\}$ of so-called hyperedges which are subsets of $V$. A hyperedge is called a $k$-edge if it is a $k$-subset of $V$. We call a hypergraph having only $k$-edges a $k$-hypergraph. Notice that a 2 -hypergraph is a usual graph. For a $k$ hypergraph $H$, the incidence matrix of $H$ is defined as a $(0,1)$-matrix of size $n \times m$ such that the $i j$-entry is 1 if vertex $v_{i}$ is contained in $k$-edge $e_{j}$ and 0 otherwise.

An orientation of a $k$-edge is a linear arrangement of the vertices of the edge. If a $k$-edge is given an orientation, then it is called a $k$-arc. If all of the hyperedges of a $k$-hypergraph are $k$-arcs, then the $k$-hypergraph is said oriented. Given an oriented $k$-hypergraph $\vec{H}=$ $(V, \vec{E})$ with $|V|=n$ and $|\vec{E}|=m$, we define the incidence matrix

[^0]\[

$$
\begin{aligned}
& M=M(\vec{H})=\left[m_{i j}\right] \text { of } \vec{H} \text { as an } n \times m(0,1,-1) \text {-matrix by } \\
& m_{i j}= \begin{cases}1 & \text { if vertex } v_{i} \text { is contained in } k \text {-arc } e_{j}, \\
-1 & \text { if } v_{i} \text { is contained in } e_{j} \text { as the last element }, \\
0 & \text { if } v_{i} \text { is not contained in } e_{j} .\end{cases}
\end{aligned}
$$
\]

For each vertex $v$ of a $k$-hypergraph $H$, we define the degree of $v$ as the number of $k$-edges of $H$ containing $v$. A $k$-hypergraph is said regular if all the vertices have the same degree. We say an oriented $k$ hypergraph $\vec{H}$ is regular if the degrees of the vertices are all equal and the number of $k$-arcs containing any given vertex as the last element is a constant. From the fact that

$$
k|E|=\sum_{v \in V} \operatorname{deg}(v)
$$

we easily see that for $\vec{H}$ (and $H$, also) to be regular it necessarily holds that $|V|=n$ divides $k|E|=k m$ and so the common degree of the vertices of $\vec{H}$ (and $H$ ) is $d=\frac{k m}{n}$. Each column sum of $M$ of $\vec{H}$ is $k-2$ and each row sum of $M$ is $\frac{(k-2) m}{n}$.

When an oriented $k$-hypergraph $\vec{H}$ contains all possible $k$-edges given some orientation, it is called a $k$-hypertournament. Notice that 2-hypertournaments are usual tournaments. The set $\vec{E}$ of $k$-arcs is of size $\binom{n}{k}$.

It is known that the ranks of tournaments on $n$ vertices are $n$ or $n-1$. Here, the rank of a tournament means the rank of the adjacency matrix of the tournament. It is natural to ask what the ranks of $k$ hypergraphs and oriented $k$-hypergraphs are. Especially, one may ask what the ranks of regular $k$-hypertournaments are. However, the adjacency matrices of hypergraphs are nor easy to look at than the incidence matrices of them. So, we rather define the rank of a $k$-hypergraph as the rank of its corresponding incidence matrix.

It is helpful to look at the rank of some circulant matrices to know the rank of $k$-hypergraphs. Since circulant matrices $A=\left[a_{i j}\right]$ satisfy $a_{i+k, j+k}=a_{i j}$ for $k=1,2, \ldots, n-1$, where the addition in the subscripts is considered in modulo $n$, they are completely determined by their first row. So, we denote a circulant matrix $A$ by $A=\operatorname{circ}\left(a_{11}, a_{12}, \ldots, a_{1 n}\right)$ with its first row $\left(a_{11}, a_{12}, \ldots, a_{1 n}\right)$.

## 2. Rank of circulant matrices

In this section, we find the ranks of some circulant $(0,1)$-matrices. Let $P$ be the permutation matrix given by

$$
P=E_{12}+E_{23}+\cdots+E_{n-1 n}+E_{n 1},
$$

where $E_{i j}$ is the $n \times n$ unit matrix having exactly one 1 as the $i j$-entry and 0 's for the other entries. Since the characteristic polynomial of $P$ is $x^{n}-1$, the eigenvalues of $P$ are the $n$th roots of unity in the complex plane.

Let $A$ be a matrix and $f(x)$ a polynomial. Then, for each eigenvalue $\zeta$ of $A, f(\zeta)$ is an eigenvalue of the matrix $f(A)$.

Lemma 2.1. [1] Let $A=\operatorname{circ}(1, \ldots, 1,0, \ldots, 0)$ be the $n \times n$ circulant matrix with the first row consisting of $k 1$ 's and $n-k 0$ 's. Then $\operatorname{rank} A=n$ if and only if $n$ and $k$ are relatively prime. In this case, $\operatorname{det} A=k$.

Proof. The circulant matrix $A$ is written as

$$
A=I+P+P^{2}+\cdots+P^{k-1}
$$

For each eigenvalue $\zeta$ of $P, 1+\zeta+\zeta^{2}+\cdots+\zeta^{k-1}$ is an eigenvalue of $A$. So, the determinant of $A$ is

$$
\operatorname{det} A=\prod_{j=1}^{n}\left(1+\zeta_{j}+\zeta_{j}^{2}+\cdots+\zeta_{j}^{k-1}\right)=k \prod_{j=1}^{n-1} \frac{\left(1-\zeta_{j}^{k}\right)}{\left(1-\zeta_{j}\right)},
$$

where $\zeta_{j}=\omega^{j}$ for $j=1, \ldots, n$, and $\omega=e^{\frac{2 \pi i}{n}}$ is the primitive $n$th root of unity.

Note that $\zeta_{j}^{k}=e^{\frac{2 \pi i}{n} j k}=1$ for some $j \neq n$ if and only if $j k$ is a multiple of $n$, i.e., if and only if $j=\frac{q n}{d}$ for some $q=1,2, \ldots, d-1$, where $d=\operatorname{gcd}(n, k)$. That is, the multiplicity of 0 as an eigenvalue of $A$ is $d-1$. Hence

$$
\operatorname{rank} A=n-d+1
$$

and so $\operatorname{det} A=0$ if and only if $\operatorname{gcd}(n, k)>1$.

When $\operatorname{gcd}(n, k)=1$, the sets $\left\{\zeta_{j}^{k} \mid j=1,2, \ldots, n\right\}$ and $\left\{\zeta_{j} \mid j=\right.$ $1,2, \ldots, n\}$ are the same. Consequently we have $\operatorname{det} A=k$.

Let $S(n, k)$ be the set of $n \times n(0,1)$-matrices with row sums and column sums equal to $k$. Then, Lemma 2.1 provides an example of the following fact.

Lemma 2.2. [1] There exists a matrix $A \in S(n, k)$ with $\operatorname{det} A=$ $k \operatorname{gcd}(n, k)$.

Lemma 2.3. [4] If $A \in S(n, k)$, then $\bar{A}=J-A \in S(n, n-k)$ and

$$
k \operatorname{det} \bar{A}=(n-k) \operatorname{det} A,
$$

where $J$ is the all 1's matrix.
Using Lemmas 2.1 and 2.3, we can easily derive the following result.
Corollary 2.4. Let $\operatorname{gcd}(n, k)=1$ and let $A \in S(n, k)$ be $A=$ $\operatorname{circ}(1, \ldots, 1,0, \ldots, 0)$. Then $\bar{A}=J-A$ is written as $\bar{A}=P^{k}+P^{k+1}+$ $\cdots+P^{n-1}, \bar{A} \in S(n, n-k)$ and $\operatorname{det} \bar{A}=n-k$.

Theorem 2.5. Let $A_{1}=(1,0,1,0, \ldots, 0) \in S(n, 2)$. Then $A_{1}$ is a singular matrix if and only if $n$ is a multiple of 4 .

Proof. The matrix $A_{1}$ is written as $A_{1}=I+P^{2}$, where $P$ is the permutation matrix defined before. Let $\omega$ denote the $n$th primitive root $e^{2 \pi i / n}$ of unity. Then

$$
\operatorname{det} A_{1}=2 \prod_{j=1}^{n-1}\left(1+\omega^{2 j}\right)
$$

So $\operatorname{det} A_{1}=0$ if and only if $\omega^{2 j}=-1$ for some $j=1,2, \ldots, n-1$. The equation

$$
\omega^{2 j}=e^{i\left(\frac{4 \pi j}{n}\right)}=-1
$$

implies that $\frac{4 \pi j}{n}=\pi N_{j}$ for some odd integer $N_{j}$ and hence $4 \mid n$.
Conversely, suppose that $n=4 a$ for some positive integer $a$. Then we have $\omega^{2 j}=e^{\pi i j / a}=-1$ for $j=a$ and $j=3 a$ so that $\operatorname{det} A_{1}=0$.

For $l=1,2, \ldots, n-2$, let $A_{l} \in S(n, 2)$ be the circulant matrix with the first row $(1,0, \ldots, 0,1,0, \ldots, 0)$, where the second 1 appears in the $(l+2)$ th component of the row vector : $A_{l}=\operatorname{circ}(1,0, \ldots, 0,1,0, \ldots, 0)$.

Note that for $l=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$, the matrices $A_{l}$ and $A_{n-2-l}$ are permutationally equivalent, i.e.,

$$
A_{l} P^{n-1-l}=A_{n-2-l} \quad \text { or } \quad A_{l}=A_{n-2-l} P^{l+1}
$$

So the determinants of $A_{l}$ and $A_{n-2-l}$ satisfy

$$
\operatorname{det} A_{l}=\operatorname{det} A_{n-2-l} \cdot \operatorname{det} P^{l+1}
$$

where

$$
\operatorname{det} P^{l+1}=\prod_{j=1}^{n} \omega^{j(l+1)}=\omega^{(l+1) \frac{n(n+1)}{2}}=e^{i(l+1)(n+1) \pi}
$$

is -1 if both $n$ and $l$ are even, and 1 otherwise. Hence,

$$
\operatorname{det} A_{n-2-l}= \begin{cases}-\operatorname{det} A_{l}, & \text { if both } n \text { and } l \text { are even }, \\ \operatorname{det} A_{l}, & \text { otherwise }\end{cases}
$$

Theorem 2.6. Let $A_{l}=\operatorname{circ}(1,0, \ldots, 0,1,0, \ldots, 0) \in S(n, 2)$, as above, for $l=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$. If $A_{l}$ is singular, then $n$ is even.

In fact, when $l$ is even, $A_{l}$ is singular if and only if $n$ is even. When $l$ is odd, let $l+1=2^{u} v$ for some $u \geq 1$ and an odd $v \geq 1$. Then, $A_{l}$ is singular if and only if $2^{u+1} \mid n$.

Proof. From Theorem 2.5, it is known that $A_{1}$ is singular if and only if $4 \mid n$. For $l=2,3, \ldots,\left\lfloor\frac{n}{2}\right\rfloor, A_{l}=I+P^{l+1}$ and

$$
\operatorname{det} A_{l}=2 \prod_{j=1}^{n-1}\left(1+\omega^{(l+1) j}\right)
$$

So $\operatorname{det} A_{l}=0$ if and only if for some $j$,

$$
\omega^{(l+1) j}=e^{i\left(\frac{2 \pi(l+1) j}{n}\right)}=-1 .
$$

That is, $\frac{2 \pi(l+1) j}{n}=\pi N_{j}$ for some odd integer $N_{j}$. So $2(l+1) j=n N_{j}$, i.e., $n$ is even.

Suppose that $l$ is even. If $n=2 a$ for some positive integer $a$, then for $j=a, \frac{2 \pi(l+1) j}{n}=(l+1) \pi$ and so $\omega^{(l+1) j}=-1$, i.e., $\operatorname{det} A=0$. Hence when $l$ is even, $A_{l}$ is singular if and only if $n$ is even.

Now suppose that $l$ is odd. Write $l+1=2^{u} v$, where $u \geq 1$ is an integer and $v \geq 1$ is an odd integer. If $\operatorname{det} A_{l}=0$, then $\frac{2 \pi(l+1) j}{n}=$ $\frac{\pi 2^{u+1} v j}{n}=\pi N_{j}$ for some odd $N_{j}$ implies that $2^{u+1} \mid n$. Conversely, if $2^{u+1} \mid n, n$ is written $n=2^{u+1} b$ for some positive integer $b$. Then $\frac{2 \pi(l+1) j}{n}=\frac{\pi v j}{b}$. So for $j=b, 3 b, \ldots,\left(2^{u+1}-1\right) b$, we have $\omega^{(l+1) j}=-1$ and hence $\operatorname{det} A_{l}=0$.

Corollary 2.7. If $n$ is odd, then the $n \times n$ circulant matrix $A_{l}$ is nonsingular for all $l=1,2, \ldots, n-2$.

Theorem 2.8. Let $A=\operatorname{circ}(-1,1, \cdots, 1,0, \cdots, 0)$, where -1 appears once, 1 appears $k-1$ times and 0 appears $n-k$ times. Then $\operatorname{rank} A=n$ for all $n \geq 2$ and $3 \leq k \leq n$.

Proof. The matrix $A$ is written $A=-I+P+P^{2}+\cdots+P^{k-1}$. Let $\zeta_{j}=\omega^{j}$, where $\omega$ is the primitive $n$th root of unity. Then the determinant of $A$ is

$$
\operatorname{det} A=\prod_{j=1}^{n}\left(-1+\zeta_{j}+\zeta_{j}^{2}+\cdots+\zeta_{j}^{k-1}\right)=(k-2) \prod_{j=1}^{n-1}\left(\frac{1-\zeta_{j}^{k}}{1-\zeta_{j}}-2\right) .
$$

So det $A=0$ if and only if $\frac{1-\zeta_{j}^{k}}{1-\zeta_{j}}-2=0$ for some $j \in\{1,2, \ldots, n-1\}$. That is, $\zeta_{j} \neq 1$ is a common root of the equations

$$
1-z^{k}-2(1-z)=0, \quad|z|=1
$$

These together imply that

$$
\left|z-\frac{1}{2}\right|=\left|\frac{1}{2} z^{k}\right|=\frac{1}{2} .
$$

The only complex number $z$ satisfying both $\left|z-\frac{1}{2}\right|=\frac{1}{2}$ and $|z|=1$ is $z=1$. So $\operatorname{det} A \neq 0$, and hence $\operatorname{rank} A=n$.

## 3. Rank of $k$-hypergraphs

Now consider the (non-signed) vertex-edge incidence matrix $M$ of a $k$-hypergraph $H$ on $n$ vertices and $m k$-edges, which is an $n \times m(0,1)$ matrix. We define the rank of a $k$-hypergraph $H$ as the rank of the corresponding incidence matrix $M$. We want to find a condition for the incidence matrices of $k$-hypergraphs to be of rank $n$. If $m<n$, then the rank of $M$ is trivially less than $n$. We assume $m \geq n$. Then $\operatorname{rank} M \leq$ $n$. If $n$ and $k$ are relatively prime and if the incidence matrix includes $n$ columns $e=(1,1, \ldots, 1,0, \ldots, 0)^{T}$ and $P^{j} e$ for $j=1, \ldots, n-1$, then by Lemma 2.1, we see that these columns are linearly independent and hence $\operatorname{rank} M=n$.

Theorem 3.1. Let $H$ be a complete $k$-hypergraph on $n$ vertices. Then the incidence matrix $M$ of $H$ contains a submatrix of size $n \times n$ whose determinant is $k \operatorname{gcd}(n, k) \neq 0$ and so rank $M=n$.

Proof. The fact that $H$ is a complete $k$-hypergraph means that $H$ contains all the possible $k$-edges on $n$ vertex set. So the incidence matrix $M$ contains all the possible $(0,1) n$-tuples with $k 1$ 's and $n-k$ 0 's as its columns and so $M$ is of size $n \times\binom{ n}{k}$. By Lemma 2.2, it is immediate that $M$ contains a submatrix $A \in S(n, k)$ with $\operatorname{det} A=$ $k \operatorname{gcd}(n, k)$, and hence $\operatorname{rank} M=n$.

Note that in the theorem if $\operatorname{gcd}(n, k)=1$, we can pick $n$ columns, $e=(1,1, \ldots, 1,0, \ldots, 0)^{T}$ and $P^{j} e$ for $j=1, \ldots, n-1$, which together make the $n \times n$ submatrix $B$ of $M$, the transpose $B^{T}$ of which is the circulant matrix $\operatorname{circ}(1, \ldots, 1,0, \ldots, 0)$. So by Lemma $2.1, M$ contains a submatrix whose determinant is $k$.

For an $(0,1) n$-tuple $e$, there exists a positive integer $q$ such that $P^{q} e=e$. We define the smallest one among such $q$ 's the order of $e$ under $P$. Define $e_{i}$ and $e_{j}$ to be equivalent under $P$ if $e_{i}=P^{q} e_{j}$ for some integer $q$. We can, then, partition the set of all $(0,1) n$-tuples into $t$ equivalence classes of the equivalence relation $P$. Let $\left\{e_{1}, e_{2}, \ldots, e_{t}\right\}$ be the representatives of the equivalence classes of $P$ and let the order of $e_{j}$ be $q_{j}$ for $j=1,2, \ldots, t$. Since some $(0,1) n$-tuples have orders $n$, we may assume that $q_{j}=n$ for $j=1,2, \ldots, s, s \leq n$. Then the $(0,1)-$ incidence matrix $M$ of a complete $k$-hypergraph $H$ can be written, by
interchanging the columns if necessary, as follows:

$$
M=\left[\begin{array}{lllll}
A_{1} & A_{2} & \cdots & A_{s} & A_{s+1}
\end{array} \cdots A_{t}\right],
$$

where each $A_{j}$ is an $n \times q_{j}$ circulant submatrix, whose first column is $e_{j}$ and $x$ th column is $P^{x-1} e_{j}$ for $x=2, \ldots, q_{j}$ and $j=1,2, \ldots, t$. In particular, $A_{j}$ is an $n \times n$ circulant matrix for $j=1,2, \ldots, s$.

Theorem 3.2. Let $n \geq 2$ and $3 \leq k \leq n-1$. If $n \left\lvert\,\binom{ n}{k}\right.$, then there exists a regular $k$-hypertournament matrix $M$. Furthermore, every regular $k$-hypertournament matrix $M$ has rank $M=n$.

Proof. We here just outline the proof. For the details, refer to [2]. Let $H$ be a complete $k$-hypergraph on $n$ vertices and $\tilde{M}$ the incidence matrix of $H$. Since $\left.n \left\lvert\, \begin{array}{l}n \\ k\end{array}\right.\right), r=\frac{1}{n}\binom{n}{k}$ is an integer. So the ( 0,1 )-matrix $\tilde{M}$ of size $n \times\binom{ n}{k}$ can be written as

$$
\tilde{M}=\left[\begin{array}{lllllll}
B_{1} & B_{2} & \cdots & B_{s} & B_{s+1} & \cdots & B_{r}
\end{array}\right],
$$

where each $B_{j}$ is $n \times n$ block submatrix for $j=1,2, \ldots, r$.
Since the rank of a matrix is not changed with the rearrangement of the columns of the matrix, we may assume that, with circulant matrices $A_{i}$ 's mentioned above,
$\tilde{M}=\left[\begin{array}{lllllll}B_{1} & B_{2} & \cdots & B_{s} & B_{s+1} & \cdots & B_{r}\end{array}\right]=\left[\begin{array}{lllllll}A_{1} & A_{2} & \cdots & A_{s} & A_{s+1} & \cdots & A_{t}\end{array}\right]$,
where $t$ is the number of the equivalence classes under $P$ and $A_{i}=B_{i}$ for $i=1,2, \ldots, s$, and

$$
\left[\begin{array}{lll}
A_{s+1} & \cdots & A_{t}
\end{array}\right]=\left[\begin{array}{lll}
B_{s+1} & \cdots & B_{r}
\end{array}\right] .
$$

Also, since all of the $A_{i}$ 's are circulant, we may assume that the diagonal entries of each $n \times n$ submatrix $B_{j}$ are all 1's. In particular, we may assume that $B_{1}=A_{1}=\operatorname{circ}(1, \ldots, 1,0, \ldots, 0) \in S(n, k)$.

Putting negative signs on these diagonal entries of all the blocks, we obtain a $(0,1,-1)$ regular $k$-hypertournament matrix $M$. The first block $B_{1}$ is the matrix described in Theorem 2.8, and it is nonsingular and so rank $M=n$.

## References

[1] M. Grady and M. Newman, The Geometry of an Interchange: Minimal Matrices and Circulants, Linear Algebra and Its Appl. 262 (1997), 11-25.
[2] Y. Koh and S. Ree, On k-Hypertournament Matrices, Linear Algebra and Its Applications 373 (2003), 183-195.
[3] Y. Koh and S. Ree, Adjacency and Laplacian Matrices of Oriented $k$-Hypergraphs (2004), submitted.
[4] C.-K. Li, J. S.-J. Lin and L. Rodman, Determinants of Certain Classes Of Zero-One Matrices With Equal Line Sums, Rocky Mountain Math.Jour. 29 (1999), no. 43, 1363-1385.

Youngmee Koh
Department of Mathematics
The University of Suwon
Kyunggi-do, 445-743, Korea
E-mail: ymkoh@suwon.ac.kr
Sangwook Ree
Department of Mathematics
The University of Suwon
Kyunggi-do, 445-743, Korea
E-mail: swree@suwon.ac.kr


[^0]:    Received November 19, 2004.
    2000 Mathematics Subject Classification: 05C50, 05C65, 15A18.
    Key words and phrases: Hypergraph, adjacency matrix, incidence matrix, Laplacian matrix.

    This work was partially supported by grant No. R04-2002-000-20116-0 from the Basic Research Program of the Korea Science and Engineering Foundation.

