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PUSHCHINO DYNAMICS OF INTERNAL LAYER

SANG SUP Yum*

ABSTRACT. The existence of solutions and the occurence of a Hopf
bifurcation for the free boundary problem with Pushchino dynamics
was shown in [3]. In this paper we shall show a Hopf bifurcation
occurs for the free boundary which is given by (1)

1. Introduction

In [3], they deal with the free boundary problem with Pushchino
dynamics. They showed the existence of solutions and the occurence
of a Hopf bifurcation. In this paper we shall show a Hopf bifurcation
occurs for the free boundary which is given by (1)(see in [2])

(U =Vpp — (1 + D)+ 1 H(z —s(t)) + K, (2,) € Q- UQT,
v.(0,t) =0 =w,(1,¢), t >0,

(1) v(z,0) = vo(x), 0<z<l,
T = O(v(s(t),t), t>0,

( 5(0) =59, 0<sp9<1,

where v(z,t) and v, (z, ) are assumed continuous in 2 = (0, 1) x (0, 00).
Here, H(:) is the Heaviside function, Q= = {(z,t) € Q : 0 < z <
s(t)} and Qt = {(z,t) € Q : s(t) < x < 1}. The velocity of the
interface, C'(v), in (1), which specifies the evolution of the interface s(t),
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is determined from the first equation in (1) using asymptotic techniques
(see in [1]). The function C'(v) can be calculated explicitly as

2(c1 + c2)v — 2K — (¢1 — 2a)
— + —
J(EEEE )+ 2

where 0 < a < 1/2 and ¢4, ¢2 and k are positive constants. We assume
that the bistability, —c; < b < aleata) + K.

c1+a

Cv) =

2. The preliminary results

We recall the few things from [4]:

Let G(x,y) be Green’s function of the operator A := —% +(c1+0)
and the domain of the operator A, D(A4) = {v € H*?%(0,1) : v,(0) =
vz(1) = 0}. Define a function

o(z,5) == / G(a,y)(cr H(y — 5) + r)dy

and v(s) = g(s, s). We obtain the regular problem of (1) by using the
transformation u(z,t) = v(z,t) — g(z, s(t)):

dUS ~U,S:1 u, S
2 {m<,>+A<,> ~ flu,s)

(u, 8)(0) = (uo, 50)-

The operator A is a 2 x 2 matrix whose the entry of the first row and
column is the operator A and the rest terms are all zero. The nonlinear
term f(u,s) is represented by

_ [ Clu(s) +~(s)) G(z, s)
flu,s) = ( Cluls) +(s)) ) |

We shall show the stationary solution of (1) (or (2)) exists and the
Hopf bifurcation occurs in the next section.
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3. The Hopf bifurcation

3.1 The stationary solutions
Let u(z,t) = u*(z) and s(t) = s* and the time derivatives in (2)
equal to zero we obtain the stationary problem:

= ~]|__‘

" 4 =36 NGl
0 =L0W )+ |

T

For nonzero 7 we obtain the following theorem:

THEOREM 1. Assume that

(c1 —2a)(c1 +b) — 2¢1(c1 + ¢2) (c1 —2a)(c1 +b)
2(ca — ) Y

then (2) has a unique stationary solution (u*(z),s*) = (0,s*) for all
0 < 7 < 00. The linearization of f at (0,s*) is
C C 2. * *\ A * *
Df(0,5") (i1, 8) = L2l (q(s*) ++/(s*) §) (G(s*, 5), 1).

The pair (0, s*) corresponds to a unique steady state (v*,s*) of (1) for
T # 0 with v*(z) = g(x, s*).

Proof. From the (3), we easily see that u* = 0 and s* is a solution

of the equation 7(s) = % Now, we define

c1 — 2a + 2k
2(01 - CQ)

where v(s) = EEDRTT o cosh(v/c1 + b s) sinh(yver +0(1 —s8)) +

—5- Since I"(s) < 0 for s € (0,1), we need the following conditions

['(0) > 0 and I'(1) < 0 and thus we obtain the above condition. The
formula for D f(0,s*) follows from the differentiation and the relation
C/(c1—2a+2n) _ A(c1+er)?

2(61—|—Cz) - C1 :
corresponding steady state (v*,s*) for (1). O

D(s) == y(s) -

Using Theorem 2.4 in [4], we obtain the
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3.2 A Hopf bifurcation

We now show that a Hopf bifurcation occurs as the new parameter
oy o = %m varies. The linearized eigenvalue problem of (2) is
given by

(—A+ uDF(0,5)) (1, 5) = A(u, s)

which is equivalent to

(4) Au+ Au = pey (u(s*) +7/(s%)s)G(x, s¥)
(5) As = p(u(s™) +/(s")s)

We have the following lemma:

LEMMA 2. For p* € R\ {0}, there is a Ct-curve u — (¢(u), M(1))
of eigendata such that ¢(u*) = ¢* and A(u*) = i where ¢* is an
eigenfunction of —A + p*D f(0, s*) with eigenvalue i[3.

Proof.  Let ¢* = (¢o,50) € D(A) x R. First, we see that so # 0,
for otherwise, by (4), (A + i)Yo = ifc1 G(+,s%)sg = 0, which is not
possible because A is symmetric. So without loss of generality, let
so = 1. Then by (4) E (3o, i3, u*) = 0, where

E:D(A)cxCxR— X¢ xC,

_ (A Nu—per (u(s*) +9/(s*) G(-, %)
E(u,\, pn) = < A= (u(s®) +7/(s) )

The equation E(u,\, ) = 0 is equivalent that A is an eigenvalue
of —A + pDf(0,s*) with eigenfunction (u,1). We want to apply the
implicit function theorem to F, and therefore have to check that F is
in C! and that

(6) D) E(to,iB, o) : D(A)e x € — L*(0,1) x C)
is an isomorphism. Now it is easy to see that E is in C''. The mapping

D E(o,iB, 1*) (i, A)
- (v prais) s+ i)
—pra(s*) + A
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is a compact perturbation of the mapping
(@, A) — ((A +iB)a, x)
which is invertible. As a consequence, Dy, x)E(¢o, i, 1*) is a Fredholm

operator of index 0. Thus to verify (6), it suffices to show that the
System

- { (A+ z'ﬁmj Mo = p*iu(s*)er G(-, 5*)
A= pra(s*)

necessarily implies that & = 0, A = 0. Thus let (4, ) be a solution of
(7), and define 91 := 1y — c1G(-, s*). Then

(8) (A4 if)i+ My = 0.
Also, 17 is a solution to the equation

(9) (A+iB)Y1 = —c16,-
(10) iB= 1" (7(5") + a(s") + a1Gls"57))

where J; is the delta-distribution centered at s. From the equation (9),
we have

1
m (1 (s)) = 5/0 .
So, we have that

1
(11) " / i = 1.

From (9), we can then calculate 4(s*) which, together with (8), (9)
and (11), implies that

1 1
3 [t =il =k =4 [ ul.
0 0
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1
A(/O |w1|2—w%) —0,

which implies A = 0, for otherwise Im4t = Imyy = 0, which is a
contradiction. So we conclude that A = 0. And so we have 4 = 0.

We have thus shown (6), and get a Cl-curve pu — (p(u), A(i)) of
eigendata such that ¢(u*) = ¢* and \(u*) = if. O

As a result

Now we shall use the Fourier cosine transformation to show the
transverality condition and uniqueness of p*. If we use v(x,t) = u(x,t)
—c1G(x, s), the eigenvalue problem is obtained by

(12) A = Vgp — (€1 + b)v — €104
(13) A= (0 (%) + o(s))

If we take a Fourier cosine transformation in the equation (12), then
we have that

> cos kms*
= -2 E k
v(x) 1 2 r)E e £ b N cos kmx

Furthermore, by using Green’s function
(14) v(z) = —1Gr(z, 87).
Now, we have the equation (13):
(15) p((7) (s7) — e1GA(s7,57)) = A

Here is the main theorem.

THEOREM 3. For a given pure imaginary eigenvalue i3, 3 # 0, there
exists a unique p* such that (0,s*, u*) is a Hopf point.
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Proof. We assume that § > 0 and let A\ = i3 in (15), then the real
and imaginary parts are obtained by
(16) ,uIm((—chg(s*,s*)) =0
(17) p((07)'(s™) + Re(—c1Gg(s",57))) =0
where Gg is Green’s function of the operator A + i3. If we know the

existence of 3 in (17), we may find the value of u* corresponding (3 in
(16). Thus, we define

T(B) = (v*)'(s") + Re(—c1Gp(s", 57)).

7(0) = (v")'(s7) + (= G(s", 7))

- Vel + bsiih Vver+b (1 —cosh(v/er + (1 — 28*))>

<0

and limg_,o, T(3) = (v*)'(s*) > 0. Furthermore, 77(3) > 0. Therefore
there is a unique (8 such that T(3) = 0. From this 3, the u can be
uniquely determined from (16).

Now we only need to show the transversality condition. Differentiate
with respect to p in (15) then we have

N () (1) + G (% 5%)) = ui

Evaluating at u = p* (note A(u*) = if3),

)\’(u*)(% + c1Gp(s%,5")) = G

The real part of ' (u*) is

R )\/ £ _ (M*)ZD
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where C' +iD = ¢;Gj4(s", s*). We only need to examine the sign of D.
D = c1ImG(s*, s*) and

> (cos kms*)?(k?m2 4+ ¢1 + b)
D=1
Clﬁ; ((k27r2+01+b)2+52)2

The transversality condition Re\ (p*) > 0 is satisfied. O

Therefore, we have the following theorem for the Hopf bifurcation

of (1):
THEOREM 4. Assume that

(c1 —2a)(c1 +b) —2¢1(c1 + c2) (c1 —2a)(c1 +b)
2(ca —b) AT P—

so that (1), respectively (2), has a unique stationary solution (0,s*) ,
respectively (v*,s*), for all p > 0. Then there exists a unique p* > 0
such that the linearization —A + w* Df(0,s*) has a purely imaginary
pair of eigenvalues. The point (0,s*, u*) is then a Hopf point for (1)
and there exists a C'-curve of nontrivial periodic orbits for (1), (2),
respectively, bifurcating from (0, s*, u*), (v*, s*, u*), respectively.
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