Cellular Iron Uptake from Aqueous Solutions depending on Reaction Conditions by genetically engineered Saccharomyces cerevisiae

재조합 Saccharomyces cerevisiae에 있어서 반응조건에 따른 수용성 철의 생체 흡수

  • Kim Sang-Jun (Faculty of Biological sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Chang Yu-Jung (Faculty of Biological sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Park Chung-Ung (Faculty of Biological sciences, Institute for Molecular Biology and Genetics, Chonbuk National University) ;
  • Jeong Yong-Seob (Faculty of Biotechnology, Chonbuk National University) ;
  • Kim Kyung-Suk (Faculty of Biological sciences, Institute for Molecular Biology and Genetics, Chonbuk National University)
  • 김상준 (전북대학교 자연대 생물과학부 및 유전공학연구소) ;
  • 장유정 (전북대학교 자연대 생물과학부 및 유전공학연구소) ;
  • 박충웅 (전북대학교 자연대 생물과학부 및 유전공학연구소) ;
  • 정용섭 (전북대학교 농대 응용생물공학부) ;
  • 김경숙 (전북대학교 자연대 생물과학부 및 유전공학연구소)
  • Published : 2004.12.01

Abstract

Cellular iron uptake was performed in the yeast Saccharomyces cerevisiae that transformed with human ferritin H- and L-chain genes. The recombinant yeasts were enriched in YEP medium supplemented with $2\%$ galactose for 3 days and the iron uptake was followed by incubating the cells with iron in 20 mM MOPS buffer (pH 6.5). The reactions were examined under different conditions including the iron compounds of Fe(II) and Fe(III), the concentration of iron, the concentration of cells and the reaction time. From our results, the recombinant yeast YGH2 producing H-chain ferritin showed higher cellular iron concentration at the cell concentration of 100 mg/ml than 200 mg/ml. Iron presented as Fe(II) rather than Fe(III) was taken up more efficiently. Iron uptake increased slightly when iron was added up to 14.3 mM Fe(II) and then its cellular iron concentration was $16.7{\pm}0.7\;{\mu}mol/g$ cell wet wt. In addition, the iron uptake reaction reached to maximum at about 2 hr incubation.

본 연구에서는 사람 ferritin H- 및 L-chain 유전자가 재조합된 효모 S. cerevisiae에 있어서 철의 생체 흡수 반응을 수행하였다. 재조합 효모는 $2\%$ galactose가 첨가된 YEP 배지에서 3일간 batch culture한 후, 20 mM MOPS buffer (pH 6.5) 에서 반응 균체 농도, 철 화합물 종류, 철 농도, 및 반응 시간 등을 고려하여 반응을 진행하였다. 이 실험 결과, ferritin H-chain 유전자를 발현하는 균주 YGH2에 있어서 균체 농도 100 mg/ml에서 균체 농도 200 mg/ml보다 높은 철 농도를 보였다. 그리고, 철 흡수 반응에 있어서 Fe(II)의 산화 상태가Fe(III)보다 훨씬 유리하였다. 철 농도의 증가에 따라 철 흡수량도 증가하였으며, 14.3 mM Fe(II)과 반응시 YGH2의 세포내 철 농도는 $16.7{\pm}0.7\;{\mu}mol/g$ cell wet wt.로 분석되었다. 철 흡수는 반응 시작 후 약 120분 경에 거의 최대치에 이르렀다.

Keywords

References

  1. Eide, D. J. (1998), The molecular biology of metal ion transport in Saccahromyces cerevisiae, Annu. Rev. Nutr. 18, 441-469
  2. Jeane, D. F., H. Wintz, J. H. Kim, H. Poynton, T. Fox, and C. Vulpe (2003), Yeast, a model organism for iron and copper metabolism studies, Biometals. 16, 185-197
  3. Dix, D., J. Bridgham, M. Broderius, and D. Eide (1997), Character- ization of the FET4 protein of yeast: Evidence for a direct role in the transport of iron, J. Biol. Chem. 272, 11770-11777
  4. Lesuisse, E., F. Raguzzi, and R. R. Crichton (1987), Iron uptake by the yeast Saccharomyces cerevisiae: Involvement of a reduction step, J. General Microbiol. 133, 3229-3236
  5. Harrison, P. M. and P. Arosio (1996), The ferritins: molecular properties, iron storage function and cellular regulation, Biochim. Biophys. Acta. 1275, 161-203
  6. Carrondo, M. A. (2003), Ferritins, iron uptake and storage from the bacterioferritin viewpoint, EMBO. J. 22, 1959-1968
  7. Arosio, P. and S. Levi (2002), Ferritin, iron homeostasis, and oxidative damage, Free rad. Biol. Med. 33, 457-463
  8. Levi, S., A. Luzzago, G. Cesareni, A. Cozzi, F. Franceshinelli, A. Albertin, and P. Arosio (1988), Mechanism of ferritin iron uptake: Activity of the H-chain and deletion mapping of the ferro-oxidase site, J. Biol. Chem. 263, 18086-18092
  9. Levi, S., P. Santambrogio, A. Cozzi, E. Rovida, B. Corsi, E. Tamborini, S. Spada, A. Albertini, and P. Arosio (1994), The role of the L-chain in ferritin iron incorporation, J. Mol. Biol. 238, 649-654
  10. Seo, H.-Y., Y.-J. Chung, S.-J. Kim, C.-U. Park, and K.-S. Kim (2003), Enhanced expression and functional characterization of the human ferritin H- and L-chain genes in Saccharomyces cerevisiae, Appl. Microbiol. Biotechnol. 63, 57-63
  11. Seo, H.-Y., E.-S. Jeon, Y.-J. Chung, and K.-S. Kim (2002), Heterologous expression of human ferritin H-chain and L-chain genes in Saccharomyces cerevisiae, Korean J. Biotechnol. Bioeng. 17, 162-168
  12. Shin, Y.-M., T.-H. Kwon, K.-S. Kim, K.-S. Chae, D.-H. Kim, J.-H. Kim, and M.-S. Yang (2001), Enhanced iron uptake of Saccharomyces cerevisiae by heterologous expression of a tadpole ferritin gene, Appl. Environ. Microbiol. 67. 1280-1283
  13. Laemmli, U. K. (1970), Cleavage of structural protein during the assembly of the head of bacteriophage T4, Nature 227, 680-685
  14. Aslamkhan, A. G., A. Aslamkhan, and G. A. Ahearn (2002), Preparation of metal ion buffers for biological experimentation: A methods approach with emphasis on iron and zinc, J. Exp. Zool. 292, 507-522
  15. Yu, Q., A. Kangdegedara, Y. Xu, and D. B. Rorabacher (1997), Avoiding interferences from Good's buffers: a contiguous series of noncomplexing tertiary amine buffers covering the entire range of pH 3-11, Anal. Biochem. 253, 50-56
  16. Donmez, G. and Z. Aksu (2001), Bioaccumulation of copper(II) and Nickel(II) by the non-adapted and adapted growing Candia sp., Wat. Res. 35, 1425-1434
  17. Lee, J.-L., H.-S. Song, H.-J. Kim, J.-H. Park, D.-K. Chung, C.-S. Park, D.-J. Jeoung, and H.-Y. Kim (2003), Functional expression and production of human H-ferritin in Pichia pastoris, Biotechnol. Lett. 25, 1019-1023