Extraction of Glabridin from Licorice Using Supercritical Carbon Dioxide

초임계 이산화탄소를 이용한 감초 중의 glabridin 추출

  • Cho Yun-Kyoung (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Kim Hyun-Seok (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Kim Ju-Won (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Lee Sang-Yun (Department of Chemical and Biochemical Engineering, The University of Suwon, Department of Chemical Engineering, Yonsei University) ;
  • Kim Woo-Sik (Department of Chemical Engineering, Yonsei University) ;
  • Ryu Jong-Hoon (Department of Chemical and Biochemical Engineering, The University of Suwon) ;
  • Lim Gio-Bin (Department of Chemical and Biochemical Engineering, The University of Suwon)
  • 조윤경 (수원대학교 화공생명공학과) ;
  • 김현석 (수원대학교 화공생명공학과) ;
  • 김주원 (수원대학교 화공생명공학과) ;
  • 이상윤 (수원대학교 화공생명공학과, 연세대학교 화학공학과) ;
  • 김우식 (연세대학교 화학공학과) ;
  • 유종훈 (수원대학교 화공생명공학과) ;
  • 임교빈 (수원대학교 화공생명공학과)
  • Published : 2004.12.01

Abstract

The purpose of this study is to investigate the feasibility of a cosolvent-modified supercritical $CO_2\;(scCO_2)$ extraction technique for the production of licorice extracts with high levels of glabridin. The effects of various parameters such as the type and amount of modifiers, extraction temperature ($40{\sim}80^{\circ}C$) and pressure ($10{\sim}50.0\;MPa$) on the extraction efficiency were examined at a fixed flow rate of 1 mL/min. The organic solvent extraction with pure methanol was also conducted for a quantitative comparison with the $scCO_2$ extraction. The recovery of glabridin from licorice was found to be extremely small for pure $scCO_2$. However, the addition of modifiers such as ethanol and acetone to $scCO_2$ resulted in a significant improvement in the recovery of glabridin. The recovery of glabridin was observed to increase with pressure at a constant temperature. Furthermore, the purity of the glabridin obtained from the $scCO_2$ extraction was higher compared with the organic solvent extraction.

초임계 이산화탄소를 이용해 감초 내의 glabridin을 추출하기 위하여 1 mL/min의 일정 유속으로 추출온도, 추출압력 및 보조용매의 종류와 첨가량이 추출효율에 미치는 영향을 조사하였다. 순수한 초임계 이산화탄소만을 이용하여 추출을 수행한 경우 $16\%$의 매우 낮은 회수율이 얻어졌으나, 보조용매로 $100\%$ ethanol과 acetone을 $10\%$의 농도로 첨가한 경우 $4{\sim}5.5$배 향상된 회수율을 얻을 수 있었다. 보조용매로 ethanol을 사용한 경우에는 추출온도가 감소할수록, 추출압력이 증가할수록 회수율이 증가하였고, acetone의 경우에는 추출압력이 증가함에 따라 회수율이 증가하였으나, $60^{\circ}C$의 추출온도에서 가장 높은 회수율을 얻을 수 있었다. 두 보조용매의 경우 모두 50 MPa의 추출압력 조건에서는 회수율이 떨어지는 경향을 나타내었다. 또한 acetone을 $25\%$의 농도로 첨가한 경우 $94.3\%$의 최고 회수율이 얻어졌으며, 30분 이내에 최고 회수율에 도달함을 확인하였다. 초임계 이산화탄소에 대한 보조용매로 ethanol과 acetone을 사용하여 최적의 glabridin 추출조건을 조사한 결과, ethanol은 30 MPa, $40^{\circ}C,\;25\%$의 보조용매 농도에서, acetone의 경우에는 30 MPa, $60^{\circ}C,\;25\%$의 농도조건에서 각각 $96.5\%$$94.3\%$의 최고 회수율을 얻을 수 있었으며, 유기용매 추출에 비해 $2{\sim}3$배 높은 glabridin 순도를 얻을 수 있었다.

Keywords

References

  1. Fukai, T., K. Satoh, T. Nomura, and H. Sakagami (2003), Preliminary evaluation of antinephritis and radical scavenging activities of glabridin from Glycyrrhiza glabra Fitoterapia, 74, 624-629
  2. Vaya, J., P. A. Belinky, and M. Aviram (1997), Antioxidant constituents from licorice roots: isolation, structure elucidation and antioxidative capacity toward LDL oxidation, Free Radic. Biol. Med. 23, 302-313
  3. Belinky, P. A., M. Aviram, B. Fuhrman, M. Rosenblat, and J. Vaya (1998), The antioxidative effects of the isoflavan glabridin on endogenous constituents of LDL during its oxidation, Atherosclerosis 137, 49-61
  4. Sato, J., K. Goto, F. Nanjo, S. Kawai, and K. Murata (2000), Antifungal activity of plant extracts against Arthrinium sacchari and Chaetomium funicola, J. Biosci. Bioeng. 90, 442-446
  5. Yokota T., H. Nishio, Y. Kubota, and M. Mizoguchi (1998), The inhibitory effect of glabridin from licorice extracts on melanogenesis and inflammation, Pig. Cell Res. 11, 355-361
  6. Hayashi, H., N. Hiraoka, Y. Ikeshiro, and H. Yamamoto (1996), Organ specific localization of flavonoids in Glycyrrhiza glabra L., Plant Sci. 116, 233-238
  7. Palmer, M. V. and S. S. T. Ting (1995), Applications of supercritical fluid technology in food processing, Food Chem. 52, 345-352
  8. Lang, Q. and C. M. Wai (2001), Supercritical fluid extraction in herbal and natural product studies - a practical review, Talanta 53, 771-782
  9. Chiu, K.-L., Y.-C. Cheng, J.-H. Chen, C. J. Chang, and P.-W. Yang (2002), Supercritical fluids extraction of Ginkgo ginkgolides and flavonoids, J. Supercrit. Fluids 24, 77-87
  10. Lin, M.-C., M.-J. Tsai, and K.-C. Wen (1999), Supercritical fluid extraction of flavonoids from Scutellariae radix, J. Chromatogr. A 830, 387-395.
  11. Rizvi, S. S. H (1994), Supercritical Fluid Processing of Food and Biomaterials, p. 82, Chapman and Hall, London
  12. Bowadt, S. and S. B. Hawthorne (1995), Supercritical fluid extraction in environmental analysis, J. Chromatogr. A 703, 549-571
  13. King, J. W., A. Mohamed, S. L. Taylor, T. Megrahtu, and C. Paul (2001), Supercritical fluid extraction of Vernonia galamensis seeds, Ind. Crops Prod. 14, 241-249
  14. G.-B. Lim (1989), The effects of the transition from subcritical to supercritical conditions on the mechanism for mass transfer in gas-solid systems, Ph. D. Dissertation, Department of Chemical Engineering, The University of Pittsburgh. Pittsburgh, USA