Transformation of Medicago truncatula with rip1-GUS Gene

  • Nam Young-Woo (Department of Life Science, Sogang University) ;
  • Song Dae-Hae (Department of Life Science, Sogang University)
  • 발행 : 2004.12.01

초록

Medicago truncatula is a model plant for molecular genetic studies of legumes and plant-microbe interactions. To accelerate finding of genes that play roles in the early stages of nodulation and stress responses, a trans-genic plant was developed that contains a promoter­reporter fusion. The promoter of rip], a Rhizobium-induced peroxidase gene, was fused to the coding region of $\beta-glucuronidase (GUS)$ gene and inserted into a modified plant transformation vector, pSLJ525YN, in which the bar gene was preserved from the original plasmid but the neomycin phosphotransferase gene was replaced by a polylinker. Transformation of M. truncatula was carried out by vacuum infiltration of young seedlings with Agrobacterium. Despite low survival rates of infiltrated seedlings, three independent transformants were obtained from repeated experiments. Southern blot analyses revealed that 7 of 8 transgenic plants of the T 1 generation contained the bar gene whereas 6 $T_1$ plants contained the GUS gene. These results indicate that vacuum infiltration is an effective method for transformation of M. truncatula. The progeny seeds of the transgenic plants will be useful for mutagenesis and identification of genes that are placed upstream and may influence the expression of rip] in cellular signaling processes including nodulation.

키워드

참고문헌

  1. Barker, D. G., S. Bianchi, F Blondon, Y. Dattee, G. Duc, S. Essad, P. Flament, P. Gallusci, G Genier, P. Guy, X. Muel, J Tourneur, J. Denarie, and T Huguet 1990 Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobiumlegume symbiosis. Plant Mol. Biol Rep 8 : 40-49 https://doi.org/10.1007/BF02668879
  2. Bell, C J., R A Dixon, A D. Farmer, R. Flores, J. Inman, R. A Gonzales, M. J. Harrison, N. L. Paiva, A D Scott, J. W. Weller, and G D May. 2001. The Medicago genome initiative: a model legume database. Nucleic Acids Res. 29 : 114-117 https://doi.org/10.1093/nar/29.1.114
  3. Blondon, F, D. Marie, S. Brown, and A. Kondorosi 1994. Genome size and base composition in Medicago sativa and Medicago truncatula species. Genome 37 264-270 https://doi.org/10.1139/g94-037
  4. Catoira, R , C Galera, F de Billy, R. V. Penmetsa, E P Journet, F Maillet, C. Rosenberg, D. Cook, C. Gough, and J. Denarie. 2000. Four genes of Medicago truncatula controlling components of a nod factor transduction pathway. Plant Cell 12 1647-1666 https://doi.org/10.1105/tpc.12.9.1647
  5. Chen, D -H. and P C Ronald. 1999. A rapid DNA minipreparation method suitable for AFLP and other PCR applications Plant Mol Biol Rep 17 . 53-57 https://doi.org/10.1023/A:1007585532036
  6. Cook, D. R. 1999. Medicago truncatula a model in the making! Curr Opin. Plant Biol. 2 301-304
  7. Cook, D., D. Dreyer, D. Bonnet, M. Howell, E Nony, and K. VandenBosch 1995 Transient induction of a peroxidase gene in Medicago truncatula precedes infection by Rhizobium meliloti Plant Cell 7 43-55 https://doi.org/10.1105/tpc.7.1.43
  8. Gallagher, S R 1992 Quantitation of GUS activity by fluorometry In GUS Protocols, Gallagher SR ed, Academic Press, New York
  9. Handberg, K. and J. Stougaard 1992 Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J. 2 . 487-496 https://doi.org/10.1111/j.1365-313X.1992.00487.x
  10. Harrison, M. J 2000 Molecular genetics of model legumes. Trends Plant Sci 5 414-415 https://doi.org/10.1016/S1360-1385(00)01748-9
  11. Jones, J D. G., L. Shlumukov, F. Carland, J English, S. R. Scofield, G. J. Bishop, and K Harrison. 1992 Effective vectors for transformation, expression of heterologous genes, and assaying transposon excision in transgenic plants. Transgenic Res 1 : 285-297 https://doi.org/10.1007/BF02525170
  12. Journet, E. P., M. Pichon, A Dedieu, F de Billy, G. Truchet, and D. G Barker 1994 Rhizobium meliloti Nod factors elicit cell-specific transcription of the Enod12 gene in transgenic alfalfa. Plant J 6 . 241-249 https://doi.org/10.1046/j.1365-313X.1994.6020241.x
  13. Li, X., Y Zhang, J . D. Clarke, Y Li, and X Dong 1999. Identification and cloning of a negative regulator of systemic acquired resistance, SNI1, through a screen for suppressors of nprl-1. Cell 98 329-339 https://doi.org/10.1016/S0092-8674(00)81962-5
  14. Luehrsen, K R., J. R. de Wet, and V. Walbot 1992. Transient expression analysis in plants using firefly luciferase reporter gene. Methods Enzymol. 216 : 397-414 https://doi.org/10.1016/0076-6879(92)16037-K
  15. Mylona, P., K. Pawlowski, and T. Bisseling. 1995. Symbiotic nitrogen fixation Plant Cell 7 : 869-885 https://doi.org/10.1105/tpc.7.7.869
  16. Nam, Y-W, R. V. Penmetsa, G Endre, P Uribe, D. Kim, and D. R. Cook 1999. Construction of a bacterial artificial chromosome Iibrary of Medicago truncatula and identification of clones for ethylene responsive genes Theor Appl. Genet 98 . 638-646 https://doi.org/10.1007/s001220051115
  17. Penmetsa, R. V. and D R. Cook. 1997. A legume ethylene-insensitive mutant hyperinfected by Its rhizobial symbiont. Science 275 : 527-530 https://doi.org/10.1126/science.275.5299.527
  18. Penmetsa, R. V and D. R. Cook 2000 Production and characterization of diverse developmental mutants of Medicago truncatula. Plant Physiol. 123 . 1387-1397 https://doi.org/10.1104/pp.123.4.1387
  19. Scheres, B., F van Engelen, E van der Knaap, C. van de Weil, A van Kammen, and T. Bisseling. 1990. Sequential induction of nodulin gene expression in the developing pea nodule Plant Cell 2 : 687-700 https://doi.org/10.1105/tpc.2.8.687
  20. Thoquet, P., M. Gherardi, E.-P. Journet, A. Kereszt, J.-M. Ane, J M. Prosperi, and T Huguet 2002. The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant BioI 2 : 1-13 https://doi.org/10.1186/1471-2229-2-1
  21. Trieu, A T. and M J. Harrison. 1996. Rapid transformation of Medicago truncatula: regeneration via shoot organogenesis. Plant Cell Rep. 16 6-11 https://doi.org/10.1007/BF01275439
  22. Trieu, A. T, S H. Burleigh, I V. Kardailsky, I E. MaldonadoMendoza, W. K. Versaw, L. A. Blaylock, H Shin, T. J. Chiou, H. Katagi, G R. Dewbre, D. Weigel, and M J Harrison 2000. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium Plant J. 22 : 531-541 https://doi.org/10.1046/j.1365-313x.2000.00757.x
  23. VandenBosch, K. A , G. Endre, J. I Hur, J. Moore, P Beremand, H. M. Peng, L ElliS, and C D. Town 2000. Functional genomic analysis of early symbiotic development in Medicago truncatula. Molecular Genetics of Model Legumes, John Innes Institute, England, July 24-28.
  24. van de Sande, K., K. Pawlowski, I. Czaja, U Wieneke, J. Schell, J Schmidt, R. Walden, M. Matvienko, J Wellink, A van Kammen, H. Franssen, and T. Bisseling. 1996. Modification of phytohormone response by a peptide encoded by ENOD40 of legumes and a nonlegume Science 273 . 370-373 https://doi.org/10.1126/science.273.5273.370