Construction of Recombinant BCGs Overexpressing Antigen 85 Complex and Their Protective Efficacy against Mycobacterium tuberculosis Infection in a Mouse Model

항원 85 복합체를 과발현하는 재조합 BCG의 개발 및 마우스 모델에 있어서의 결핵균 감염에 대한 방어 효능

  • Lee, Seung-Heon (Department of Molecular Biology, Korean Institute of Tuberculosis) ;
  • Jeon, Bo-Young (Department of Microbiology, Yonsei University College of Medicine) ;
  • Park, Young-Gil (Department of Molecular Biology, Korean Institute of Tuberculosis) ;
  • Lee, Hye-Young (Department of Biomedical Laboratory Science, College of Health Sciences, Yonsei University) ;
  • Cho, Sang-Nae (Department of Microbiology, Yonsei University College of Medicine) ;
  • Kim, Hyo-Joon (Department of Biochemistry and Molecular Biology, College of Science Technology, Hanyang University) ;
  • Bai, Gill-Han (Department of Molecular Biology, Korean Institute of Tuberculosis)
  • 이승헌 (대한결핵협회 결핵연구원) ;
  • 전보영 (연세대학교 의과대학 미생물학교실) ;
  • 박영길 (대한결핵협회 결핵연구원) ;
  • 이혜영 (연세대학교 보건과학대학 임상병리과) ;
  • 조상래 (연세대학교 의과대학 미생물학교실) ;
  • 김효준 (한양대학교 과학기술대학 생화학과) ;
  • 배길한 (대한결핵협회 결핵연구원)
  • Received : 2004.03.26
  • Accepted : 2004.05.14
  • Published : 2004.08.30

Abstract

Tuberculosis (TB) remains an enormous global health problem, and a new vaccine against TB more potent than the current inadequate BCG vaccine is urgently needed. We constructed three recombinant Mycobacterium bovis BCG (rBCG) strains over-expressing antigen (Ag) 85A, Ag85B, or both of M. tuberculosis using their own promoter and secretory sequence, or hsp60 promoter. SDS-PAGE analysis of rBCG proteins showed overexpression of Ag85A and Ag85B proteins in higher level than of those in their parental strain of BCG. In addition, rBCG(rBCG/B.FA) over-expressing Ag85A and Ag85B induced strong IFN-${\gamma}$ production in splenocytes. However, there was no significant difference in protective efficacy between rBCG and their parental BCG strain. In this study, therefore, rBCG over-expressing Ag85A, Ag85B, or both failed to show enhanced protection against M. tuberculosis infection in a mouse model.

결핵균 감염에 대한 주요 방어 항원 물질로서 항원 85 복합체(Ag85A, B, C)가 주목되고 있다. 우리는 이들 항원들을 과발현하는 재조합 BCG를 클로닝하였고, 마우스 모델을 이용하여 결핵균 감염에 대한 재조합 BCG의 방어 효능을 알아보고자 하였다. 항원 85A를 과발현하는 재조합 BCG를 rBCG/FA, 항원 85B를 과발현하는 재조합 BCG를 rBCG/FB, 그리고, 이들 두 항원을 과발현하는 재조합 BCG를 rBCG/B.FA라고 명명하였고, 이들 항원들의 과발현 여부를 SDSPAGE상에서 확인한 결과, 재조합 BCG에서 항원 85A와 B 단백질이 BCG에 비해 과발현된 것을 알 수 있었다. 면역주사한 마우스에서 분리한 비장세포를 M. tuberculosis H37Rv의 culture filtrate protein(CFP)으로 자극하여 분비된 IFN-${\gamma}$ 농도를 측정한 결과에서는 rBCG/B.FA만이 BCG에 비해 높은 IFN-${\gamma}$ 농도를 나타내었으나, 마우스 모델을 이용한 결핵균 감염에 대한 재조합 BCG의 방어 효능 실험에서는 BCG와 뚜렷한 차이를 나타내지 못하였다.

Keywords

References

  1. Centers for Disease Control and Prevention: Development of new vaccines for tuberculosis. Recommendations of the Advisory Council for the Elimination of Tuberculosis(ACET). MMWR Recomm Rep. 1998;47:1-6
  2. Fine PE. Variation in protection by BCG: implications of and for heterologous immunity. Lancet 1995;346:1339-45
  3. Guleria I, Teitelbaum R, McAdam RA, Kalpana G, Jacobs WR Jr, Bloom BR. Auxotrophic vaccines for tuberculosis. Nat Med 1996;2:334-7
  4. Horwitz MA, Lee BW, Dillon BJ, Horth G. Protective immunity against tuberculosis induced by vaccination with major extracellular proteins of Mycobacterium tuberculosis. Proc Natl Acad Sci USA 1995;92:1530-4
  5. Brandt L, Elhay M, Rosenkrands I, Lindblad EB, Andersen P. ESAT-6 subunit vaccination against Mycobacterium tuberculosis. Infect Immun 2000;68: 791-5
  6. Weinrich Oslen A, van Pinxteren LA Mang Okkels L, Rasmussen P, Andersen P. Protection of mice with a tuberculosis subunit vaccine based on a fusion protein of antigen 85b and east-6. Infect Immun 2001;69:2773-8
  7. Huygen K, Content J, Denis O, Montgomery DL, Yawman AM, Deck RR, et al. Immunogenicity and protective efficacy of a tuber culosis DNA vaccine. Nat Med 1996;2:893-8
  8. Kumar P, Amara RR, Challu VK, Chadda VK, Satchidanandam V. The Apa protein of Mycobacterium tuberculosis stimulates gamma interferonsecreting CD4+ and CD8+ T cells from purified protein derivative-positive individuals and affords protection in a guinea pig model. Infect Immun 2003;71:1927-37
  9. Andersen P. Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect Immun 1994;62:2536-44
  10. Wiker HG, Harboe, M. The antigen 85 complex: A major secretion product of Mycobacterium tuberculosis. Microbiol. Rev. 1992;56:648-61
  11. Launois P, Deleys R, Niang MN, Drowart A, Andrien M, Dierckx P, et al. T cell epitope mapping of the major secreted mycobacterial antigen Ag85A in tuberculosis and leprosy. Infect Immun 1994;62: 3679-87
  12. Launois P, Niang MN, De Bruyn JD, Sarthou JL, Rivier F, Drowart A, et al. The major secreted antigen complex(Ag85) from Mycobacterium bovis bacile Calmette- Guérin is associated with protective T cells in leprosy: A follow-up study of 45 household contacts. J Infect Dis 1993;167:1160-7
  13. Lee HY, Cho SN, Kim HJ and Kim JD. Construction of a Mycobacterium- cherichia coli shuttle vector and use in the expression of foreign genes in Mycobacteria. The Journal of the Korean Society for Microbiology 1997;32:292-300
  14. Murray PJ, Aldovani A, Young RA. Manipulation and potentiation of antimycobacterial immunity using recombinant bacille Calmette-Guerin strains that secrete cytokines. Proc Natl Acad Sci USA 1996;93:934-9
  15. Horwitz MA, Harth G, Dillon BJ, Maslesa-Galic S. Recombinant bacillus Calmette Guérin(BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc Natl Acad Sci USA 2000;97:13853-8
  16. Ohara N, Matsuoka M, Nomaguchi H, Naito M, Yamada T. Inhibition of multiplication of Mycobacterium leprae in mouse foot pads by recombinant Bacillus Catmette-Guerin(BCG). Vaccine 2000;18: 1294-7
  17. Ohara N, Matsuoka M, Nomaguchi H, Naito M, Yamada T. Protective responses against experimental Mycobacterium leprae infection in mice induced by recombinant bacillus Calmette-Guérin over-producing three putative protective antigen candidates. Vaccine 2001;19:1906-10
  18. Ellner JJ, Hirsch CS, Whalen CC. Correlates of protective immunity to Mycobacterium tuberculosis in humans. Clin Infect Dis 2000;30(Suppl.3):S279-82
  19. Orme IM, Miller E, Roberts AD, Furney SK, Griffin JP, Dobos KM, et al. T Lymphocytes mediating protection and cellular cytolysis during the course of Mycobacterium tuberculosis infection. J Immunol 1992;148:189-96
  20. Orme IM, Roberts AD, Griffin JP, Abrams JS. Cytokine secretion by CD4 T lymphocytes acquired in response to Mycobacterium tuberculosis infection. J Immunol 1993;151:518-25
  21. Lalvani A, Brookes R, Wilkinson RJ, Malin AS, Pathan AA, Andersen P, et al. Human cytolytic and interferon gamma-secreting CD8+ T lymphocytes specific for Mycobacterium tuberculosis. Proc Natl Acad Sci USA 1998;95:270-5
  22. Zhang M, Lin Y, lyer DV, Gong J, Abrams JS, Barnes PF. T cell cytokine responses in human infection with Mycobacterium tuberculosis. Infect Immun 1995;63:3231-4
  23. Ting LM, Kim AC, Cattamanchi A, Ernst JD. Mycobacterium tuberculosis inhibits IFN-gamma transcriptional responses without inhibiting activation of STAT1. J Immunol 1999;163:3898-906
  24. Bao L, Chen W, Zhang H, Wang X. Virulence, immunogenicity, and protective efficacy of two recombinant Mycobacterium bovis bacillus Calmette- Guérin strains expressing the antigen ESAT-6 from Mycobacterium tuberculosis. Infect Immun 2003;71: 1656-61
  25. Aldwell FE, Keen DL, Parlane NA, Skinner MA, de Lisle GW, Buddle BM. Oral vaccination with Mycobacterium bovis BCG in a lipid formulation induces resistance to pulmonary tuberculosis in brushtail possums. Vaccine 2003;22:70-6