허파혈관주위세포에서 저산소증에 의한 생존능의 억제와 유전자 발현의 변화

Inhibition of Viability and Genetic Change in Hypoxia-treated Lung Pericytes

  • 신종욱 (중앙대학교 의과대학 내과학 교실) ;
  • 김계영 (국립보건원 생명의약부 심혈관질환과) ;
  • 이영우 (중앙대학교 의과대학 내과학 교실) ;
  • 정재우 (중앙대학교 의과대학 내과학 교실) ;
  • 이병준 (중앙대학교 의과대학 내과학 교실) ;
  • 김재열 (중앙대학교 의과대학 내과학 교실) ;
  • 조인호 (국립보건원 생명의약부 심혈관질환과) ;
  • 박인원 (중앙대학교 의과대학 내과학 교실) ;
  • 최병휘 (중앙대학교 의과대학 내과학 교실)
  • Shin, Jong Wook (Department of Internal Medicine, Chung-Ang University School of Medicine) ;
  • Kim, Kae-Young (Division of Cardiovascular Diseases, Institute of Biomedical Research, Korean National Institute of Health) ;
  • Lee, Young Woo (Department of Internal Medicine, Chung-Ang University School of Medicine) ;
  • Jung, Jae Woo (Department of Internal Medicine, Chung-Ang University School of Medicine) ;
  • Lee, Byoung Jun (Department of Internal Medicine, Chung-Ang University School of Medicine) ;
  • Kim, Jae-Yeol (Department of Internal Medicine, Chung-Ang University School of Medicine) ;
  • Jo, Inho (Division of Cardiovascular Diseases, Institute of Biomedical Research, Korean National Institute of Health) ;
  • Park, In Won (Department of Internal Medicine, Chung-Ang University School of Medicine) ;
  • Choi, Byoung Whui (Department of Internal Medicine, Chung-Ang University School of Medicine)
  • 투고 : 2004.06.02
  • 심사 : 2004.07.06
  • 발행 : 2004.07.30

초록

연구 배경 : 허파혈관주위세포는 허파미세혈관에서 혈액공기 장벽을 이루고 있는 중요한 세포이다. 이 세포는 생리학적으로 혈류와 혈관의 투과성을 조절하는 기능이 있다. 본 연구는 급성폐손상/급성호흡곤란증후군에서 혈관 과투과성 및 개형에 혈관주위세포의 변화가 중요한 역할을 할 것으로 보고 시작하게 되었다. 흰쥐로 부터 일차 배양한 허파혈관주위세포에 저산소 상태를 만들었을 때, 세포의 생존능에 미치는 영향과 저산소증에 의해 유도되는 유전자의 발현을 살펴보았다. 방 법 : 흰쥐로부터 허파혈관주위세포를 일차 배양 및 계대 배양하였다. 광학 현미경 및 세포 면역 화학 염색으로 세포를 확인하였다. 2% $O_2$의 세포 배양기와 $200{\mu}M$ $CoCl_2$를 처리하였다. 세포의 증식은 tryphan blue 염색 후 세포수를 세는 방법을 택하였다. 유전자 발현은 역전사 중합 효소 연쇄반응을 이용하였다. 결 과 : 1. 흰쥐로부터 허파혈관주위세포를 성공적으로 일차 배양 및 계대 배양할 수 있었다. 2. 2% $O_2$$CoCl_2$에서 혈관주위세포는 24시간, 36시간, 48시간에 증식이 억제되었다. 3. 허파혈관주위세포에 저산소 상태의 자극을 주면 VEGF와 smad-2의 발현이 현저하게 증가하였다. 4. 허파혈관주위세포의 HIF$1{\alpha}$, COX-2는 저산소상태에서 VEGF, smad-2에 비해 발현의 변화가 현저하지 않았다. 결 론 : 허파혈관주위세포를 일차 배양함으로써 허파꽈리혈관장벽의 연구를 위한 한 모델을 만들었고, 저산소 상태에서 증식의 억제와 유전자 발현의 변화를 살펴봄으로써 허파혈관손상의 기전을 규명하는데 향후 도움이 될 것으로 보인다.

Background : Lung pericytes are important constituent cells of blood-air barrier in pulmonary microvasculature. These cells take part in the control of vascular contractility and permeability. In this study, it was hypothesized that change of lung pericytes might be attributable to pathologic change in microvasculature in acute lung injury. The purpose of this study was how hypoxia change proliferation and genetic expression in lung pericytes. Methods : From the lungs of several Sprague-Dawley rats, performed the primary culture of lung pericytes and subculture. Characteristics of lung pericytes were confirmed with stellate shape in light microscopy and immunocytochemistry. 2% concentration of oxygen and $200{\mu}M$ $CoCl_2$ were treated to cells. Tryphan blue method and reverse transcription-polymerase chain reaction were done. Results : 1. We established methodology for primary culture of lung pericytes. 2. Hypoxia inhibited cellular proliferation in pericytes. 3. Hypoxia could markedly induce vascular endothelial growth factor(VEGF) and smad-2. 4. Hypoxia-inducible factor-$1{\alpha}$(HIF-$1{\alpha}$) was also induced by 2% oxygen. Conclusion : Viability of lung pericytes are inhibited by hypoxia. Hypoxia can stimulate expression of hypoxia-responsive genes. Pericytic change may be contributed to dysfunction of alveolar-capillary barrier in various pulmonary disorders.

키워드

참고문헌

  1. Weibel ER. Morphological basis of alveolar-capillarygas exchange. Physiol Rev 1973;53:419-95
  2. Epling GP. Electron microscopy fo the bovine lung: The normal blood-air. Am J Vet Res 1964;25:679-89
  3. Hirschi KK, D'Amore PA. Pericytes in the microvasculature. Cardiovasc Res 1996;32:687-98
  4. Meyrick B, Reid L. The effect of continued hypoxia on rat pulmonary arterial circulation. An ultrastructural study. Lab Invest 1978;38:188-200
  5. Flick MR, Matthay MA. Pulmonary Edema and Acute Lung Injury. In : Murray JF, Nadel JA, Mason RJ, Boushey HA, editors. Textbook of Respiratory Medicine. 3rd ed. Philadelphia: W. B. SAUNDERS COMPANY; 2000;1587-91
  6. Rabinovitch M, Gamble W, Nadas AS, Miettinen OS, Reid L. Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features. Am JPhysiol 1979;236:H818-H827
  7. Stenmark KR, Fasules J, Hyde DM, Voelkel NF, Henson J, Tucker A, et al. Severe pulmonary hypertension and arterial adventitial changes in newborncalves at 4,300 m. J Appl Physiol 1987;62:821-830
  8. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992;12:5447-54
  9. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxiainducible factor 1 is a basic helix-loop-helix-PAS heterodimer regulated by cellular $O_2$ tension. Proc Natl Acad Sci USA 1995;92:5510-5514
  10. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-induciblefactor 1. Mol Cell Biol 1996;16:4604-13
  11. Pintavorn P, Ballermann BJ. TGF-βand endothelium during immune injury. Kidney Int 1997;51:1401-12
  12. Pepper MS. Transforming growth factor-$\beta$ vasculogenesis, angiogenesis, and vessel wall integrity. Cytokine Growth Factor Rev 1997;8:21-43
  13. Smith JD, Bryant SR, Couper LL, Vary CP, Gotwals PJ, Koteliansky VE, et al. Soluble transforming growth factor- $\beta$ type-II receptor inhibits negative remodeling, fibroblast transdifferentiation, and intimal lesion formation but not endothelial growth. Circ Res 1999;84:1212-22
  14. Derynck R, Zhang Y, Feng XH. Smads: transcriptional activators of TGF-beta responses. Cell 1998;95(6):737-40
  15. Attisano L, Wrana JL. Smads as transcriptional co-modulators. Curr Opin Cell Biol 2000;12:235-43
  16. Ohno M, Cooke JP, Dzau VJ, Gibbons GH. Fluid shear stress induces endothelial transforming growth factor $\beta-1$ transcription and production. Modulation by potassium channel blockade. J Clin Invest 1995;95:1363-9
  17. Topper JN, Cai J, Qiu Y, Anderson KR, Xu YY, Deeds JD, et al. Vascular MADs: two novel MAD-related genes selectively inducible by flow in human vascularendothelium. Proc Natl Acad Sci USA 1997;94:9314-9
  18. DiChiara MR, Kiely JM, Gimbrone MA Jr., Lee ME, Perrella MA, Topper JN. Inhibition of E-selectin gene expression by transforming growth factor beta inendothelial cells involves coactivator integration of Smad and nuclear factor kappaB-mediated signals. J Exp Med 2000;192:695-704
  19. Schmedtje JF Jr, Ji YS, Liu WL, DuBois RN, Runge MS. Hypoxia induces cyclooxygenase-2 via NFκB p65 transcription factor in human vascular endothelial cells. J Biol Chem 1997;272:601-8
  20. Yang X, Sheares KK, Davie N, Upton PD, Taylor GW, Horsley J, et al. Hypoxic induction of cox-2 regulates proliferation of human pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 2002;27: 688-96
  21. Kapanci Y, Burgan S, Pietra GG, Conne B, Gabbisni G. Modulation of actin isoform expression in alveolar myofibroblasts (contractile interstitial cells) duringpulmonary hypertension. Am J Pathol 1990;136:881-9
  22. Adler KB, Low RB, Leslie KO, Mitchell J, Evans JN. Contractile cells in normal and fibrotic lung. Lab Invest 1989;60:473-85
  23. Sims DE, Westfall JA. Analysis of relationships between pericytes and gas exchange capillaries in neonatal and mature bovine lungs. Microvasc Res1983;25:333-42
  24. Sims DE, Miller FN, Donald A, Perricone MA. Ultrastructure of pericytes in early stages of histamine-induced inflammation. J Morphol 1990;206:333-42
  25. Tilton RG, Kilo C, Williamson JR, Murch DW. Differences in pericyte contractile function in rat car diac and skeletal muscle microvasculatures. MicrovascRes 1979;18:336-52
  26. Tilton RG. Capillary pericytes: perspectives and future trends. J Electron Microsc Tech 1991;19:327-344
  27. D'Amore PA. Culture and study of pericytes. In: Cell Culture Techniques in Heart and Vessel Research, edited H. M. Piper, editor. Heidelberg, Germany: Spring-Verlag, 1990;299-314
  28. Speyer CL, Steffes CP, Ram JL. Effects of vasoactive mediators on the rat lung pericyte: quantitative analysis of contraction on collagen lattice matrices.Microvasc Res 1999;57:134-43
  29. Nomura M, Yamagishi S, Harada S, Hayashi Y, Yamashima T, Yamashita J, et al. Possible partici pation of autocrine and paracrine vascular endothelialgrowth factors in hypoxia-induced proliferation of endothelial cells and pericytes. J Biol Chem 1995;270:28316-24
  30. Kaner RJ, Ladetto JV, Singh R, Fukuda N, Matthay MA, Crystal RG. Lung overexpression of the vascular endothelial growth factor gene induces pulmonaryedema. Am J Respir Cell Mol Biol 2000;22(6):657-64
  31. Thickett DR, Armstrong L, Christie SJ, Millar AB. Vascular endothelial growth factor may contribute to increased vascular permeability in acute respiratorydistress syndrome. Am J Respir Crit Care Med 2001;164:1601-5
  32. Barleon B, Siemeister G, Martiny-Baron G, Weindel K, Herzog C, Marme D. Vascular endothelial growth factor up-regulates its receptor fms-like tyrosinekinase 1 (FLT-1) and a soluble variant of FLT-1 in human vascular endothelial cells. Cancer Res 1997;57:5421-5
  33. Sanchez-Elsner T, Botella LM, Velasco B, Corbi A, Attisano L, Bernabeu C. Synergistic cooperation between hypoxia and transforming growth factor- $\beta$ pathways on human vascular endothelial growth factor gene expression. J Biol Chem 2001;276:38527-35
  34. Semenza GL. HIF-1 and human disease: one highly involved factor. Genes Dev 2000;14:1983-91