Organic Solvent Absorption Characteristics of Split-type Microfiber Fabrics

  • Lee Kwang Ju (Department of Fiber & Polymer Engineering, Center for Advanced Functional Polymers, Hanyang University) ;
  • Kim Seong Hun (Department of Fiber & Polymer Engineering, Center for Advanced Functional Polymers, Hanyang University) ;
  • Oh Kyung Wha (Department of Home Economics Education, Chung-Ang University)
  • Published : 2004.12.01

Abstract

Split-type nylon/polyester microfiber and polyester microfiber fabrics possess drapeability, softness, bulkiness, and smoothness, so that they can be applied in various industrial fields. In particular, these fabrics are able to absorb various organic solvents, and can be used as clean room materials. To investigate the chemical affinity between solvents and the compositional materials of these fabrics, the contact angle of thermally pressed film fabrics was measured with different solvents. The thermally pressed nylon/polyester fabric films showed a chemical attraction to formamide. The sorption properties of the microfiber fabrics were investigated using a real time testing device, and these tests showed that the sorption behavior was more influenced by the structure of the fibrous assembly than by any chemical attraction. The effect of the fabric density, specific weight, and sample structure on the sorption capacity and rate was examined for various organic solvents. The sorption capacity was influenced by the density and the specific weight of the fibrous assembly, and knitted fabric showed a higher sorption capacity than woven fabric. However, the sorption rate was less affected in lower viscosity solvents. On applying Poiseuille's Law, the lower viscosity solvents showed higher initial sorption rates, and more easily penetrated into the fibrous assembly.

Keywords

References

  1. S. M. Burkinshaw, 'Chemical Principles of Synthetic Fibre Dyeing', 1st Ed., Chapter 4, Blackie Academic and Professional, London, 1995
  2. E. J. Lee, J. S. Bok, C. J. Hong, and C. W. Joo, J. Korean Fiber Soc., 25, 37 (2000)
  3. M. J. Park and S. H. Kim, J. Korean Fiber Soc., 37, 470 (2000)
  4. J. H. Lee, S. H. Kim, K. J. Lee, D. Y. Lim, and H. Y. Jeon, Text. Res J. (in press)
  5. S. H. Kim, S. J. Kim, and K. W. Oh, Text. Res. J., 73, 489 (2003) https://doi.org/10.1177/004051750307300605
  6. M. J. Park, S. H. Kim, S. J. Kim, S. H. Jeong, and J. Y. Jaung, Text. Res. J., 71, 831 (2001) https://doi.org/10.1177/004051750107100913
  7. S. H. Kim, J. H. Lee, D. Y. Lim, and H. Y. Jeon, Text. Res. J., 73, 455 (2003) https://doi.org/10.1177/004051750307300514
  8. C. H. Wu, M. N. Lin, C. T. Feng, K. L. Yang, Y. S. Lo, and J. G. Lo, J. Chromatogr A., 996, 225 (2003) https://doi.org/10.1016/S0021-9673(03)00544-2
  9. E. Kissa, Text. Res. J., 66, 660 (1996) https://doi.org/10.1177/004051759606601008
  10. American Society for Testing and Materials. Standard Test Methods for Felt. ASTM Designation D 461-93
  11. INDA IST 10.1(95), Standard Test Method for Absorbency Time, Absorbency Capacity, and Wicking Rate, Association of the Nonwoven Fabrics Industry, NC, 1995
  12. P. R. Harnett and P. N. Mehta, Text. Res. J., 54, 471 (1984) https://doi.org/10.1177/004051758405400710
  13. American Society for Testing and Materials, Standard Test Methods for Sorption of Bibulous Paper Products (Sorptive Rate and Capacity Using Gravimetric Principles), ASTM Designation D 5802-95
  14. W. J. McConnell, U. S. Patent, 4357827 (1982)
  15. K. Ghali, B. Jones, and J. Tracy, Text. Res. J., 64, 106 (1994) https://doi.org/10.1177/004051759406400206
  16. G. M. Bryant, Text. Res. J., 54, 217 (1984) https://doi.org/10.1177/004051758405400401
  17. K. K. Wong, X. M. Tao, C. W. M. Yuen, and K. W. Yeung, Text. Res. J., 71, 49 (2001)
  18. American Society for Testing and Materials, Standard Test Methods for Surface Wettability and Absorbency of Sheeted Materials Using an Automated Contact Angle Tester, ASTM Designation D 5725-97
  19. S. J. Kim, S. H. Kim, and K. W. Oh, J. Korean Fiber Soc., 37, 412 (2000)
  20. D. K. Owens and R. C. Wendt, J. Appl. Polym. Sci., 13, 1741 (1969) https://doi.org/10.1002/app.1969.070130815
  21. D. W. Van Krevelen, 'Properties of Polymers', 3rd Ed., Chapter 8, Elsevier Science Publishing Co., New York, 1990
  22. S. Lowell and J. E. Shields, 'Powder Surface Area and Porosity', 2nd Ed., Chapter 7, Chapman and Hall, London, 1984
  23. J. Y. Kim, E. S. Seo, D. S. Park, K. M. Park, S. K., C. H. Lee, and S. H. Kim, Fibers and Polymers, 4(3), 107 (2003) https://doi.org/10.1007/BF02875456