A Study on Characterization of Nonwoven Mats via Electrospinning under Vacuum

진공 하에서 전기방사된 부직포의 특성에 대한 연구

  • Kim Hyung-jun (Department of Textile Engineering, Chonbuk National University) ;
  • Jung Yoon-ho (Department of Textile Engineering, Chonbuk National University) ;
  • Khil Myung-seob (Department of Textile Engineering, Chonbuk National University) ;
  • Kim Hak-yong (Department of Textile Engineering, Chonbuk National University) ;
  • Bang Ho-Ju (Department of Textile Engineering, Chonbuk National University)
  • Published : 2004.12.01

Abstract

The exploitation of technologies based on electro spinning have been limited due to poor understanding of the process and consequent limitation in process control, productivity and reproducibility. To control the effect of the environmental parameter, which is one of important electro spinning parameters, the vacuum process was introduced because the magnitude of electric field in vacuum is not limited by the low dielectric breakdown strength of air. For this study, PCL dissolved in a mixture of N,N-dimethylformamide (DMF) and methylene chloride (MC) was electrospun as a form of nonwoven mats consisting of nano-sized fibers under vacuum and they have been analyzed using SEM and DSC. The PCL nonwoven mats via electrospinning under vacuum showed the characteristic spinning behavior observed at atmospheric pressure. In addition, results obtained from tensile test showed that PCL nonwoven mats via electro­spinning under vacuum have better mechanical properties than those prepared at atmospheric pressure.

Keywords

References

  1. J. M. Deitzel, J. Kleinmeyer, D. Harris, and N. C. Beck Tan, 'The Effect of Processing Varialbes on the Morphology of Electrospun Nanofibers and Textiles', Polymer, 42, 261-272(2001) https://doi.org/10.1016/S0032-3861(00)00250-0
  2. K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, and N. H. Sung, 'nfluenece of a Mixing Solvent with Tetrahydrofuran and N,N-dimethylformamide on Electrospun Poly(vinyl chloride) Nonwoven Mats', J. Polym. Sci., Part B: Polym. Phys., 40, 2259-2268(2002) https://doi.org/10.1002/polb.10293
  3. M. Bognitzki, W. Czado, T. Frese, A. Schaper, M. Hellwig, M. Steinhart, A. Greiner, and J. H. Wendorff, 'Nanostructured Fibers via Electrospinning', Adv. Mater., 13, 70-72(2001) https://doi.org/10.1002/1521-4095(200101)13:1<70::AID-ADMA70>3.0.CO;2-H
  4. J. M. Deitzel, J. Kleinmeyer, J. K. Hirvonen, and N. C. Beck Tan, 'Controlled Deposition of Electrospun Poly(ethylene oxide) Fibers', Polymer, 42, 8163-8170(2001) https://doi.org/10.1016/S0032-3861(01)00336-6
  5. S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, 'Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers', Macromolecules, 35, 8456-8466(2002) https://doi.org/10.1021/ma020444a
  6. K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee, 'Characterization of Nano-structured Poly($\varepsilon$-caprolactone) Nonwoven Mats via Electrospinning', Polymer, 44, 1287-1294(2003) https://doi.org/10.1016/S0032-3861(02)00820-0
  7. C. J. Buchko, L. C. Chen, Y. Shen, and C. Martin, 'Processing and Micro Structural Characterization of Porous Biocompatible Protein Polymer Thin Films', Polymer, 40, 7397-7407(1999) https://doi.org/10.1016/S0032-3861(98)00866-0
  8. G. I. Taylor, 'Electrically Driven Jets', Proc. R. Soc. London Ser. A, 313, 453-475(1969) https://doi.org/10.1098/rspa.1969.0205
  9. G. C. Rutledge, M. Y. Shin, S. B. Warner, A. Buer, M. Grimler, and S. C. Ugbolue, 'A Fundamental Investigation of the Formation and Properties of Electrospun Fibers', NTC Annual Report, M98-D01, 1999
  10. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, 'Experimental Characterization of Electrospinning the Electrically Forced Jet and Instabilities', Polymer, 42, 9955-9967(2001) https://doi.org/10.1016/S0032-3861(01)00540-7
  11. P. K. Baumgarten, 'Electrostatic Spinning of Acrylic Microfibers', J. Colloid. Interf. Sci., 36, 71-79(1971) https://doi.org/10.1016/0021-9797(71)90241-4
  12. D. H. Reneker, W. Kataphinan, A. Theron, E. Zussman, and A. L. Yarin, 'Nanofiber Garlands of Polycaprolactone by Electrospinning', Polymer, 43, 6785-6794(2002) https://doi.org/10.1016/S0032-3861(02)00595-5
  13. J. Doishi and D. H. Reneker, 'Eletrospinning Process and Applications of Electrospun Fibers', J. Electrostat., 35, 151-160(1995) https://doi.org/10.1016/0304-3886(95)00041-8
  14. D. H. Reneker and I. S. Chun, 'Nanometer Diameter Fibers of Polymer Produced by Electrospinning', Nanotechnology, 7, 216-223(1996) https://doi.org/10.1088/0957-4484/7/3/009
  15. A. Streitwiester, C. H. Heathcock, and E. M. Kosower, 'Introduction to Organic Chemistry', Chapter 9, MacMillan Publishing, New York, 1992
  16. W. Grorge, 'Handbook of Solvents', Chapter 13, Chem Tec Publishing, Toronto, 2001
  17. C. J. Buchko, L. C. Chen, Y. Shen, and D. C. Martin, 'Processing and Microstructural Characterization of Porous Biocompatible Protein Polymer Thin Films', Polymer, 40, 7397-7407(1999) https://doi.org/10.1016/S0032-3861(98)00866-0
  18. S. M. Jo, W. S. Lee, and S. W. Chun, 'Nanofiber Technology and Applications', Fiber Technology and Industry, 6(1/2), 61-82(2002)
  19. K. H. Lee, H. Y. Kim, H. J. Bang, Y. H. Jung, and S. G. Lee, 'The Change of Bead Morphology Formed on Electrospun Polystyrene Fibers', Polymer, 44, 4029-4034(2003) https://doi.org/10.1016/S0032-3861(03)00345-8
  20. H. Fong, I. Chun, and D. H Reneker, 'Beaded Nanofibers Formed During Electrospinning', Polymer, 40, 4585-4592 (1999) https://doi.org/10.1016/S0032-3861(99)00068-3
  21. S. Koombhongse, W. Liu, and D. H. Reneker, 'Flat Polymer Ribbons and Other Shapes by Electrospinning', J. Polym Sci., Polym. Phys., 39, 2598(2001) https://doi.org/10.1002/polb.10015
  22. S. Migelski, J. S. Stephens, D. B. Chase, and J. F. Robolt, 'Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers', Macromolecules, 35, 8456-8466(2002) https://doi.org/10.1021/ma020444a