The Rheological Properties of the Solutions of PVDF in DMAc for Electrospinning

전기방사용 PVDF/DMAc 용액계의 유변학적 특성

  • Ji Byoung Hwa (Division of Applied Chemical Engineering, Hanyang University) ;
  • Kim Byoung Chul (Division of Applied Chemical Engineering, Hanyang University)
  • 지병화 (한양대학교 응용화학공학부 고분자 구조제어 연구실) ;
  • 김병철 (한양대학교 응용화학공학부 고분자 구조제어 연구실)
  • Published : 2004.12.01

Abstract

The solutions of polyvinylidene fluoride (PVDF) in dimethyl acetamide (DMAc) were rheologically investigated. In the dilute concentration regime, the solutions gave values of Huggins constant lower than 0.52, which decreased with increasing temperature. This suggests that DMAc is a good solvent and the solvating power is increased with increasing temperature. The solutions exhibited an inflection point on the log-log plot of $\eta_{sp}$ versus $(\eta)C$. Further, the slope was slightly decreased with increasing temperature from 10 to $30^{\circ}C$. At high concentrations, the solutions did not show lower Newtonian flow region. Further, raising temperature from 10 to $30^{\circ}C$ increased viscosity and yield stress of the solutions. Increasing concentration had the same effect on the rheological properties as increasing temperature. Relaxation time $(\lambda) $ increased as the concentration and temperature increased.

Keywords

References

  1. T. R. Dargaville, G. A. George, D. J. T. Hill, and A. K. Whittaker, 'High Energy Radiation Grafting of Fluoropolymers', Prog. Polym. Sci., 28, 1355-1376(2003) https://doi.org/10.1016/S0079-6700(03)00047-9
  2. A. J. Lovinger, 'Poly(vinylidene fluoride) in Bassett DC. Development in Crystalline Polymers', Vol. 1, Applied Science, London, 1982
  3. A. Bottino, G. Capannelli, S. Munari, and A. Turturro, 'Solubility Parameters of Poly(vinylidene fluoride)', J. Polym. Sci., Part B: Polym. Phys., 26, 785-794(1988) https://doi.org/10.1002/polb.1988.090260405
  4. J. E. Dohany and L. E. Robb, 'Polyvinylidene Fluoride in Kirk-Othmer Encyclopedia of Chemical Technology', 3rd Ed., Vol. 11, Wiley, New York, 1980
  5. Q. Zhang and E. L. Cussler, 'Microporous Hollow Fibers for Gas Absorption : I. Mass Transfer in the Liquid', J. Membr. Sci., 23, 321-332(1985) https://doi.org/10.1016/S0376-7388(00)83149-X
  6. D. Wang, K. Li, and W. K. Teo, 'Preparation and Characterization of Polyvinylidene Fluoride (PVDF) Hollow Fiber Membranes', J. Membr. Sci., 163, 211-220(1999) https://doi.org/10.1016/S0376-7388(99)00181-7
  7. S. Koombhongse, W. X. Liu, and D. H. Reneker, 'Flat Polymer Ribbons and Other Shapes by Electrospinning', J. Polym. Sci., Part B: Polym. Phys., 39, 2598-2606(2001) https://doi.org/10.1002/polb.10015
  8. P. Gupta and G. L. Wilkes, 'Some Investigations on the Fiber Formation by Utilizing a Side-by-side Bicomponent Electrospinning Approach', Polymer, 44, 6353-6359(2003) https://doi.org/10.1016/S0032-3861(03)00616-5
  9. K. S. Yun et al., The Patent Cooperation Treaty (PCT), WO 01/89022 A1, 2001
  10. K. S. Yun et al., The Patent Cooperation Treaty (PCT), WO 01/89023 A1, 2001
  11. E. J. Lee, N. H. Kim, K. S. Dan, and B. C. Kim, 'Rheological Properties of Solutions of General-purpose Poly(vinyl alcohol) in Dimethyl Sulfoxide', J. Polym. Sci. Part B: Polym. Phys., 42, 1451(2004) https://doi.org/10.1002/polb.20017
  12. W. S. Lyoo, B. C. Kim, and W. S. Ha, 'Spontaneous Orientation of Molecules during Saponification of Polyvinyl Pivalate', Polym. J., 30, 424-430(1998) https://doi.org/10.1295/polymj.30.424
  13. J. H. Choi, B. C. Kim, J. Blackwell, and W. S. Lyoo, 'Phase Behavior and Physical Gelation of High Molecular Weight Syndiotactic Poly(vinyl alcohol) Solution', Macromolecules, 34, 2964-2972(2001) https://doi.org/10.1021/ma001710s
  14. W. S. Lyoo, B. C. Kim, and W. S. Ha, 'Rheological and Rheo-optical Properties of High Molecular Weight Syndiotactic and Atactic Polyvinylalcohol Solutions', Polym. Eng. Sci., 37, 1259-1265(1997) https://doi.org/10.1002/pen.11770
  15. J. R. Prakash and H. C. $\ddot{O}$ttinger, 'Universal Viscometric Functions for Dilute Polymer Solutions', J. Non-Newton. Fluid Mech., 71, 245-272(1997) https://doi.org/10.1016/S0377-0257(97)00012-8
  16. M. Becca, C. Ioan, S. Ioan, B. C. Simionescu, and C. I. Simionescu, 'Ultrahigh Molecular Weight Polymers in Dilute Solutions', Prog. Polym. Sci., 24, 379-424(1999) https://doi.org/10.1016/S0079-6700(99)00007-6
  17. P. D. Hong, C. M. Chou, and C. H. He, 'Solvent Effects on Aggregation Behavior of Polyvinyl Alcohol Solutions', Polymer, 42, 6105-6112(2001) https://doi.org/10.1016/S0032-3861(01)00056-8
  18. H. H. Winter and F. Chambon, 'Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point', J. Rheol., 30, 367-375(1986) https://doi.org/10.1122/1.549853
  19. W. S. Lyoo, J. H. Kim, J. H. Choi, B. C. Kim, and J. Blackwell, 'Role of Degree of Saponification in the Shear-Induced Molecular Orientation of Syndiotacticity-Rich Ultrahigh Molecular Weight Poly(vinyl alcohol)', Macromolecules, 34, 3982-3987(2001) https://doi.org/10.1021/ma001338g