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Design and Performance Evaluation of Expansion Buffer Cache
Won-Kee Hong'

ABSTRACT

VLIW processor is considered to be an appropriate processor for the embedded system, provided with high performance and low power con~
sumption due to its simple hardware structure. Unfortunately, the VLIW processor often suffers from high memory access latency due to the
variable length of I-packets, which consist of independent instructions to be issued in parallel. 1t is because of the variable I-packet length that
some I-packets must be placed over two cache blocks, which are called straddle I-packets, so that two cache accesses are required to fetch
such I-packets. In this paper, an expansion buffer cache is proposed to improve not only the instruction fetch bandwidth, but also the power
consumption of the I-cache with moderate hardware cost. The expansion buffer cache has a small expansion buffer containing a fraction of a
straddle packet along with the main cache to reduce the additional cache accesses due to the straddle I-packets. With a great reduction in the
cache accesses due to the straddle packets, the expansion buffer cache can achieve 5~19% improvement over the conventional I-caches in the
Delay-Powet-Area metric.

1M vLIW, YHiCi= A|AHI(Embedded System), Y& 3 (Instruction Cache), HHN 01& HHE(Instruction Fetch Band-

width), B3 48 (Power Consumption)

1. Introduction

ILP processors improve the system performance by
executing several independent instructions simultaneously.
Fecently, the rapid advance of the semiconductor and
network technology makes the ubiquitous and mobile
computing be realized. The embedded system is getting
more and more important as a core platform for the ubi-
quitous and mobile computing. The VLIW processor,
which is one of several ILP processors, is in the limelight
as a processor for the embedded and mobile system since

% This research was supported by the Daegu University Research Grant,
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it can achieve high performance with low power consum-
ption due to the simple hardware circuit[3].

Basically, the VLIW processor is performed by the in-
struction—packet (I-packet) basis. The I-packet is a group
of independent instructions to be issued in parallel that
are determined at compile time. Because the I-packets are
different from one another in the number of instructions,
their lengths are not fixed. The variable I-packet length
does not assure that the starting or ending address of a
particular I-packet is always matched with the address of
a block boundary in the cache. That is, many I-packets
happen to be stored in the two consecutive cache blocks,
which are called straddle I-packets. In the conventional
cache, the straddle I-packets increase the overall instruc—



490 FEMLIED=EX A M11-AZ XMT7=(2004.12)

tion fetch latency since every reads of straddle I-packets
requires the two sequential cache accesses, which is call-
ed double access.

In order to decrease the instruction fetch latency due to
the straddle I-packets, the bank cache [9] was proposed.
It divides a cache into two banks and stores instructions
in each bank in the interleaving fashion. Every I-packet
requests from the processor fetches the corresponding
front block and the next rear block from the two banks
respectively and simultaneouslyl. Therefore, it can remo-
ve the double accesses due to the straddle I-packets.
However, it increases the overall power consumption by
accessing two banks at every cache accesses. Moreover,
it requires a post-fetch stage to be placed between the
fetch stage and the decode stage in the processor's
execution pipeline in order to rearrange the fetched two
blocks from each banks. The additional pipeline stage in-
creases the branch misprediction penalty since it defers
the detection of misprediction. The branch penalty can
countervail the performance improvement gotten by the
removal of double access. In addition, the delayed detec—
tion of misprediction may cause a bad effect on the
power dissipation since it can increase the fetch of use-
less I-packets. The power consumption becomes one of
the most important constraints to be resolved in proces-
sor design as the embedded and mobile computers are
prevailed [4, 5, 10].

In this paper, an expansion buffer cache is presented
that consists of a conventional main cache and a small
direct-mapped addressing buffer called an expansion bu-
ffer. It decreases the instruction fetch latency by effec-
tively reducing the number of double accesses, while it
achieves a very close or evenlower power consumption
than the conventional cache. The expansion buffer stores
only the tail I-packets. It is accessed along with the main
cache only when a requested I-packet is known as a
straddle I-packet in order to reduce power consumption
due to the expansion buffer access. It is roughly detected
whether an I-packet is the straddle I-packet or not by
using the offset address of program counter. If the ex-
.pansion buffer contains the tail I-packet, the double ac-
cess can be avoided. Because the instructions read from
the expansion buffer are always in order, it does not need
an additional fetch stage for instruction rearrangement in
the instruction pipeline. Therefore, it can also minimize
the branch misprediction penalty and the number of un-
necessary cache accesses.

1) The instructions of the straddle I-packet in the front block is the head
I-packet and those in the rear block is the tail I-packet.

The expansion buffer cache is compared with the con-
ventional direct-mapped cache and the bank cache, and
evaluated in terms of memory access latency, power con—
sumption, and the hardware cost using the IMPACT tool
[11]. Recently, as the mobile computing and ubiquitous
computing based on the low power embedded system is
rapidly growing, the power consumption appears as one
of the important performance metrics, along with the exe-
cution time and the hardware cost. The Delay - Power
metric, an integrated metric to evaluate a system in terms
of the execution time and the power consumption, has
been proposed and cited widely in the literature [17, 18].
In this paper, the Delay-Power-Area metric is used for
the integrated evaluation of the execution performance,
power consumption and the hardware cost. As an ex-~
tended metric of the Delay-Power, it is computed by mul-
tiplying the normalized memory access latency, power
consumption and chip area. The experimental results
show that the expansion buffer can achieve maximum
Delay(Power improvement of 10% over the conventional
direct-mapped caches and 19% over the bank caches.

This paper is organized as follows : Section 2 discusses
related work and explains the structure and the fetch
mechanism of the bank cache in more detail. The organi-
zation and operation flow of expansion buffer cache will
be introduced in Section 3. Section 4 presents the experi-
mental methodology and results measured with various
metrics. Some final remarks will be drawn in Section 5.

2. Related Work

There have been several studies to achieve high-band
width instruction fetching. The branch address cache [12]
and the collapsing buffer cache [13] support fetching of
non-contiguous blocks with a multi-ported, multi-banked,
or multiple copies of the I-cache. However, this leads to
multiple fetch groups that must be aligned and collapsed
at fetch time, which can increase the fetch latency. The
trace cache [1,2] does not require fetching of non-conse-
cutive basic blocks from the I-cache, as it stores dy-
namically constructed sequences of basic blocks in a spe—
cial purpose cache. It performs all instruction alignment
and collapsing at completion time. At completion time, a
fill unit constructs traces of instructions to be stored in
the trace cache. It optimizes the fetch latency by shifting
the complexity of multiple-branch prediction, multiple fet-
ch groups, and instruction alignment and collapsing to the
completion time.

Multipath execution schemes [6-8] were proposed to



reduce the misprediction penalties incurred by branches.
They fetch and execute instructions from both paths after
the branch. By fetching and executing from both possible
branch targets, they assure that the branch cannot be
predicted incorrectly at all. However, it requires tremen-—
dous hardware complexity since it always keeps track of
instructions from multiple paths that reside in the pipeline
at the same time.

The above schemes were designed mainly for the su-
perscalar processors but the bank cache [9] was proposed
for VLIW processor. (Figure 1) shows an example of the
bank cache organization in a four-issue VLIW processor,
where a cache block can accommodate four instructions.
Eecause an I-packet can be placed over two cache blocks,
both cache banks are always accessed at the same time.
One of the cache banks contains the corresponding block
in which first instructions of the requested I-packet re-
side, and the other bank holds the sequential successive
block in which the last instructions are stored. Because
an instruction is of variable length and does not always
begin on a block boundary in memory, the low-order bits
are used as an offset to index to the start of the in-
struction in the cache block. When an instruction address
is presented to address the I-cache, the cache address
decoder selects consecutive blocks in both cache banks.
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(Figure 1) The organization of the bank cache
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As shown in (Figure 1), an I-packet from the bank
cache will pass through two pipeline stages such as the
fetch and the post-fetch stage. In the fetch stage, the se—
quential successive block in another bank is read along
with the corresponding cache block addressed by the pro-
gram counter. In the post-fetch stage, the rearrangement
of two fetched blocks should be made via block swapping,
because the memory instructions within an I-packet will
be executed in the order that is consistent with their
sequential left-to-right order. Then, the rearranged blocks
are merged and the requested I-packet is extracted.
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The additional pipeline stage leads to the heavier pe-
nalty of branch misprediction, because the detection of
misprediction is deferred due to the insertion of a post-
fetch stage between the instruction fetch stage and the
branch detection stage. In addition, the delayed detection
of misprediction as well as the double access has a de-
trimental effect on power dissipation. This is because the
number of unnecessary I-packets referenced during the
time between the mispredicted branch and the next I-
packet on the correct path will be increased::

3. Expansion Buffer Cache

The objective of designing the expansion buffer cache
is to decrease the memory access latency and power
consumption due to the double access for straddle I-
packets with the additional cost of chip area. This is
achieved by placing a small buffer along with a main
cache in the memory hierarchy, which minimizes the
number of double accesses for straddle I-packets and re-
moves the post-fetch stage in the instruction pipeline.

3.1 Organization of the Expansion Buffer Cache

The expansion buffer cache is equipped with a con-
ventional main cache and a small expansion buffer as
shown in (Figure 2). The expansion buffer as well as the
main cache is addressed by the direct-mapped addressing
scheme. Because I-packets, each of which consists of
multiple concurrent instructions, are variable in length and
do not always begin at the boundary of a block in the
cache, the offset address, which is the low-order bits of
the requested I-packet address, -is used to locate the
I-packet in the cache block. While the tag array of the
expansion buffer holds only the tag address for each
entry, that of the main cache contains the I-packet length
information as well as tag addresses, in order to support
an I-packet fetch and a Next Program Counter (NPC)
computation. The tag address is possessed by each cache
block, but the I-packet length information is maintained
on an instruction basis. (Figure 3)(a) shows the I-cache
structure, i.e., a tag field and a length field entry for the
main cache, where each cache block contains m in-
structions. A carry bit and an offset field are associated
with each instruction to indicate the length of the corres-
ponding I-packet as shown in (Figure 3)(b). It is used for
completing the NPC computation while fetching an I-
packet from the I-cache [14]. The carry bit is set to one
if the next sequential I-packet does not reside in the
same cache block. Each offset field has the offset of the
next sequential I-packet within its cache block. In order
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to compute the NPC, the corresponding carry bit of the
starting instruction in a requested I-packet is added to
the tag and index, and the offset value is copied to the
offset field of the Program Counter (PC).
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(Figure 2) The organization of the expansion buffer cache

The expansion buffer width ( We.,) is chosen to be less
than the length of an I-packet (n). Specifically, Wes is

the expansion buffer width such that 0 < W..,< # where
n is the maximum number of instructions in an I-packet,
because each entry is used for storing only a portion of a
straddle I-packet. For example, in a four-instruction I-
packet processor, the expansion buffer can be constructed
as one-, two-, or three-instruction width. The expansion
buffer can be constructed as a fully associative buffer
with a Content Addressable Memory (CAM) structure to
reduce conflict misses, but in this study, Static Random
Access Memory (SRAM) is selected for the expansion
buffer, to curtail hardware cost and power dissipation.

In fact, it is only necessary to retrieve the expansion
buffer for straddle I-packets. Access to the expansion
buffer incurs the additional power dissipation. In order to
reduce the number of unnecessary accesses to the expan-
sion buffer, the offset encoder, which is used for selec-
tively enabling the expansion buffer, is provided. The off-
set encoder examines whether the block offset of the pro-

gram counter belongs within the [ Wyum— (n—1)1" offset

in the main cache block ( Wi represents the maximum
number of instructions that a main cache block can con-
tain). If not so, the decoder in the expansion buffer will
be enabled to retrieve the instructions within the I-packet.
Although the offset encoder is on the critical path, the
overall access latency will not be prolonged because the
access time to the much smaller expansion buffer, which
is much faster than that of the main cache, is short
enough to check for a straddle I-packet.

[vE tag Lc;iff]c;f)ff[ fc;fo]
(a) tag and length fields.

pc | tag [ index [off | word ]

3 of;l

nec | tag [ index [off [ word |

(b) NPC computation(off : offset, ¢ : carry bit)

(Figure 3) The structure of tag and I-packet length field entry
for the main cache and NPC computation

Because memory instructions, which are dependent on
one another, are allowed to be in the left-to-right order
within the same I-packet by the ILP compiler, it must be
assured that they are executed in their original order. In
the expansion buffer cache, the column decoder is im-
plemented by simply extending the column decoder of the
main cache to select n consecutive instructions up to
those in the expansion buffer. Because the expansion
buffer stores only the rear part of an I-packet belonging
to the sequential successive block, the order of instruc—
tions in an I-packet is always maintained. Therefore, it is
not necessary to reorder the instructions in the I-packet
fetched from the expansion buffer cache. It means that an
additional pipeline stage for the instruction rearrangement
is not required. The instructions fetched from the main
cache and the expansion buffer pass through the column
decoder, where the instructions corresponding to the re-
quested I-packet are extracted by the block offset address
and the length information.

3.2 Operational Flow

Cache management for accessing the I-packets, except
the straddle I-packets, is the same as for the conventional
direct-mapped cache. When a straddle I-packet is de-
manded, the main cache is searched for the front part of
the straddle I-packet and at the same time, the expansion
buffer is searched for its rear part. Depending on the hit
or miss in the main cache and the expansion buffer, the
following operational flow is performed.

@ Hit in both the main cache and the expansion buffer :
The I-packet can be fetched by simply accessing the.
corresponding instructions from both the main cache
and the expansion buffer.

® Hit in the main cache but miss in the expansion buffer:
It means that the front part of the straddle I-packet is
held in the main cache, but its rear part is not in the
expansion buffer. Hence, the main cache is searched



again for the successive cache block containing the
rear part, with one cycle penalty. If not in the main
cache, it is read from the lower level memory. The
rear part of the straddle I-packet belonging to the
successive block is stored in the expansion buffer
along with the supply of the demanded I-packet to the
processor.

@ Miss in the main cache : the corresponding block is
fetched from the lower level memory. In addition, if
the successive block does not reside in the main
cache, it is read from the lower level memory. After
that, the rear part of the straddle I-packet is copied
into the expansion buffer.

For example, let us assume that the maximum number
of instructions in an I-packet is four and each cache
block can accommodate eight instructions, as shown in
(Figure 2). It is supposed that each entry in the expan-
sion buffer can contain up to three instructions. If an I-
packet A which consists of three instructions, Al, A2,
and A3, is requested, the decoder of the expansion buffer
will be driven to retrieve the corresponding entry, since
the offset address of the I-packet A (seven) is greater

than W — (n—1), ie, five. (Figure 2) shows that the
expansion buffer contains the rear parts of the I-packet
A, ie, A2 and A3, which are stored in the successive
b.ock of the main cache. Therefore, instead of being
accessed twice to fetch the straddle I-packet, the expan—
sion buffer cache extracts Al from the main cache, and
A2 and A3 from the expansion buffer through the column
dacoder at the same time.

4, Performance Evaluation

The details of the simulation environment and empirical
results in terms of memory access latency, power con—
sumption, and hardware cost are presented in this section.
As the energy dissipation is now considered as one of the
important metrics to assess a processor, execution per—
formance alone is not a good measurement to evaluate an
I-cache model. In this study, the Delay-Power metric is
used to combine both execution performance and power
consumption into a single metric. Moreover, the per—
formance of the expansion buffer cache is measured with
a new metric, Delay-Power-Area, which considers the im-
pact of not only the execution time and the power con—
sumption, but also the hardware cost for the processor
evaluation. The conventional direct-mapped cache archi-~
tecture (CONV) and the bank cache architecture (BANK)
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are selected as the architectures with which to compare
the expansion buffer cache (EXP).

4.1 Simulation Environment

All simulations in this study are conducted using the
IMPACT tool set from the University of Illinois. The
simulation architecture is based on a four-issue pipelined
VLIW machine. For fair comparisons with the BANK,
which suffers from branch misprediction more signific-
antly than do the other I-cache models, a 512-entry
Branch Target Buffer (BTB) with correlation branch pre-
diction is considered [15]. The correlation branch predictor
provides high branch prediction accuracy. This is because
while most branch predictors only consider the past be-
havior of the current branch instruction, the correlation
branch predictor considers the behavior of other branches
to predict the target of the current branch. It requires the
Global Branch History register with a counter table,
which contains the outcome of the n most recent bran-
ches. This information is combined with the address of
the branch under consideration to index the counter table.

(Table 1) Simulation parameters

System Parameters Value
CPU clock 400MHz
I-cache size 16Kbytes
I-cache block size 32, 64bytes
D-cache size Infinite
Memory latency 15CPU cycles
Memory bandwidth 1.6Gbytes/sec

<Table 1> shows the basic system parameters for
simulation. Two sizes of a cache block, e.g., 32 bytes and
64 bytes, are analyzed to evaluate the impact of straddle
instructions, and the number of straddle I-packets differs
depending on the cache block size chosen. It is assumed
that the data cache access is always hit and there is no
second-level cache. The bus bandwidth is assumed to be
64 bits per cycle, and the latency taken for the first word
to come back from the main memory is assumed to be 15
processor cycles.

Five out of eight SPECint95 benchmarks and six other
applications from MediaBench are used for performance
analysis of each I-cache model. All benchmarks are com-
piled with superblock optimization by the IMPACT com-
piler. <Table 2> shows the benchmarks, the training and
input data sets, the dynamic instructions analyzed, the
percentage of dynamic branches, and the misprediction
ratio,
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{Table 2> Characteristics of benchmarks

training set input set dynamic instructions Y%dynamic branch misprédiction ratio (96)
go 2stone9.in Sstone?l.in 247201051 195 26.0
gce amptjp.i varsasm.i 10400034 26.1 154
iipeg vigo.ppm penguin.ppm 231201344 74 105
i train.Isp test.lsp 167200845 212 7.2
perl jumble.pl, jumble.in scrabble.pl, scrabble.in 25653136 2.9 81
adpcm clinton.pcm clinton.pcm 5821861 218 26.8
dmpeg test.m2v meil6v.m2v 8600063 113 2.3
epic testimg.pgm testimg.pgm 9792564 148 1.0
gsm clinton.pcm S_16_44.pcm 15400104 86 53
cjpeg testimg.ppm monalisa.ppm 10000051 179 59
dipeg testimg.jpg monalisa.jpg 10400034 58 6.2

4.2 Experimental Results

(Figure 4) shows the access ratio of the straddle I-
packets over the total number of cache accesses as the
cache block size varies in the CONV. Because the double
access is caused by the straddle I-packets, the double
access ratio is equal to the percentage of the straddle I-
packet over the total number of cache accesses. In gener—
al, small block size induces more accesses to the straddle
I-packets than large block size. The straddle I-packets in
the 32-byte block cache correspond to about 18% of the
total dynamic I-packets on average, while those in the
64-byte block cache account for about 82%.

30%

25%

20%

15%

10%

5%

Percentage of straddle |-packets

0%

perl adpcm dmpeg epic gsm cjpeg djpeg avg

go gcc ijpeg i

(Figure 4) Percentage of straddle I-packets

In order to achieve performance improvement in the
EXP, the expansion buffer is used to prevent the main
cache from being doubly accessed due to the straddle I-
packets. We examined the expansion buffer hit ratio as
the buffer width and the number of entries changed. The
number on the X-axis in (Figure 5) indicates the buffer
width and several expansion buffers with a different
number of entries, e.g., 16 entries (EXP-16), 32 entries
(EXP-32), and 64 entries (EXP-64). (Figure 5) shows

that, for a given hardware cost, extending the expansion
buffer width is better than increasing the number of
buffer entries. Specifically, in the MediaBench applications
such as adpcm, dmpeg, and epic, even the EXP-16 of
three-instruction width can almost completely avoid the
double access. However, in spite of the buffer expansion
in the ijpeg, the buffer hit ratio is decreased due to the
tremendous conflict miss in the 32-byte block EXP. The
average hit ratio in EXP-64 of three-instruction width is
83% and 8% in the 32-byte and 64-byte cache block,
respectively, while those in the EXP-16 are about 62%
and 73%, and those in the EXP-32 about 76% and 80%.
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(Figure 6) shows that the double access ratio, which is
the percentage of the double accesses over all the cache
accesses, is decreased as the number of entries and the
buffer width are increased. The double access ratio is de-
creased down to about 2.77%~7.01% in the 32-byte cache
block, and 1.06%~2.21% in the 64-byte cache block, on
average, depending on the number of buffer entries. It

means that the expansion buffer can reduce the amount
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of double accesses in the CONV by more than 61%,
which is calculated from the CONV’s access ratio of the
straddle I-packets over the total number of cache ac-
cesses and the EXP’s double access ratio.

The decreased double access ratio due to the expansion
buffer causes a positive effect on the memory access
latency. (Figure 7) shows the memory access latencies in
each I-cache model normalized by that in the CONV. As
shown in (Figure 7), the EXPs, where all of them have
the three-instruction-width buffer, can achieve a perfor-
mance average gain of about 3%~8% over that of the
CONV. Although the BANK gets rid of the double ac—
cesses completely, its memory access latency is equal to
or even higher than that of the EXP, due to the high
misprediction penaity.

4.3 Low Power Consumption

To estimate power consumed by the I-caches, the
analytical model developed by Kamble and Ghost [15]
was used and adapted to the expansion buffer cache and
the other comparison I-caches. It gives an accurate power
estimate since it uses the runtime statistics such as hit/
miss counts, fraction of read/write requests, and assum-
es stochastic distributions for signal values.

According to [15], the main sources of power are
composed of the following four components : Ewis, £wora,
E uput, and E i, which denote the energy dissipation
for bit-lines, word-lines, address and data output-lines,
and address input-lines, respectively. When Ny, pr, Nest, »,
Ny, are the total number of bit line transitions due to
precharging, reads and writes, CA is the total number of
cache accesses, Nuour, Nain are the number of transitions
on the address and data line drivers, and Nanp: is the

number of transitions in the address input lines, the overall
energy dissipation in a cache can be defined as follows :

Econe= Epis+ E yora+ Egupa+ Eippus

Eyu=0.5- ng . [Nbit,pr * Crit, o T (N, w7t Nig 1) * Cri st
CA- Ncolumns (Cg Qu +Cg. Q»+ Cg, QP)]

Eorpa=Vii* CA* Copprtines

oulput 0 5 Vdd< aoutput Caaulput+N dinput * Ca'input)’
E it =0.5* Vi * Nppnpa* (22 (6+1) - B+ Cpp. dectC i),

where Cpi pr and Cpi yware the effective load capaci-
tance of the bit lines during precharging and read/write
to the cell respectively, Ceo. is the gate capacitance of
transistor @z, Cuordiine, Caout and Cam are load capacitan-
ce of the word, address, and data line driver, B and b are
the numbers of cache blocks and banks, Cis gec is the

gate capacitance of the first level of decoder, and Cauwire
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is the wire capacitance of the common address lines feed-

ing the decoder.
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(Table 3> Transition counts for power equation

Main Cache Expansion Buffer
CA Nigt Nois+ Nyoto_access N access
Nb,-,'p, 0.5 * (NigF Nopis + Nt acoess) * Nevhamns | 05 * Nog_acoess * Novtmns
Nb,»,' o | 0.5 (Nt N+ Navaie_aceess) * Neotomns | 0-5 " N avcess * N ootomns
Nes w 0.5 * Nois " N cotumns 0.5 * Ny miss * Neohomns
N itp 0.5 N * Moy s N/A
Notinpua 0.5 Nuiss * Ning_us N/A
Nan 0.5« (Nt Nowss F Nowsto_acoess) * Wadar_tus | 0-5* Nor_acvess ™ Watdr_bus

Based on this equation, the analytical models for esti—
mating power dissipation of each I-cache model can be
obtained using the transition counts. In the CONV and
EXP, the number of the double accesses, Naousic_access,
due to the straddled instruction is added to the overall
cache accesses. The number of columns, N eommss, in the
BANK is twice the size of that in the CONV cache, while
the number of rows decreases by 50%. The energy dissi-
pation due to the accesses to the expansion buffer in the
EXP should be considered. The number of accesses to the
expansion buffer, Nsus_cccess, is defined apart from the
cache accesses to the main cache because the expansion
buffer access is performed only when a requested inst—
ruction has the possibility of extending over two cache
blocks. The transition counts used for the analytical mo—
del are summarized in <Table 3>. The parameter

Nyus_miss denotes the number of expansion buffer misses.

[E'conv BANK O ExP-16 O EXP-32 @ EXP.64]

Normalized Power Consumption

0 geec  fpeg [} pert

(a) 32-byte cache block
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[oconv ®BanK O Exe-16 O ExP-32 @ ExP-64]

[ I | E g F

1.2
1.1

Normalized Power Consumption

go gee  ijpeg li perl
(b) 64-byte cache block
(Figure 8) Normalized power consumption
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(Figure 8) presents the normalized power consumption

in each I-cache architecture. In most applications, except
gce and go, the EXP achieves lower power than CONV,
irrespective of its number of entries. Because in the gcc
and go, the portion of the straddle I-packets in the overall
dynamic instructions is relatively small and conflict mis—
ses due to large code size frequently happen in the ex-
pansion buffer, the impact of the expansion buffer on the
reduction of double accesses is relatively small, so that
the power consumption in the EXP is nearly equal to or
even slightly higher than that in the CONV. It is shown
that the BANK requires high power consumption due to
the simultaneous accesses to the two cache blocks. The
power consumption in the EXP is about 1.20 times lower
than that in the BANK, while the CONV is about an
average of 1.16 times lower than the BANK.

(Figure 9) shows the Delay-Power for each I-cache
model. The Delay is the normalized memory access la-
tency based on that of the CONV. The Power is also
normalized by the amount of power consumed in the
CONV. Although the BANK is better than the CONV in
terms of memory access latency, it consumes much more
energy than the CONV. Therefore, the Delay-Powers of
the 32-byte and 64-byte block BANK are about 1.09 and
1.14 times higher than those of the CONV. On the other
hand, because the EXP retains low power consumption
with high performance, it achieves up to about 10% and
19% improvement in the Delay-Power over the CONV
and the BANK, respectively.
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(Figure 9) Evaluating i-cache systems using Delay(Power metric)

4.4 Hardware Cost
The on-chip cache area model suggested for a set-



associative cache by Mulder et al. [16] is employed in the
analysis of hardware cost. It considers not only the area
for data storage, but also the areas for the control logic,
address tags, comparators, and status bits. The total

cache area, A cacke, can be calculated as follows :

Acache = Acl+Atag+Adata’

where Ao A g A gurs denote  the area for control logic,
tag and status bits, and data array, respectively. The
areas of all components are then converted into an equi-
valent register area. The area unit, rbe, equals the area of
the register cell. The SRAM cell area is 0.6 rbe and the
assumed size of the control logic is 130 rbe. The data

array area of Ndata_ row % Na'ata__col size iS

A data = 0 . 6(Ndata_ row + Lsense _amp )(Ndata_ col + Wdriver) rbe,

where Liense_amp is the length of the bit-line sense
amplifiers, and Wayier is the width Jof the driver. It is
assumed that they are equal to 6 rbe respectively. In the
tag array including status bits, the area for comparators,
L .mp, will be added, which is assumed to be 6 rbe.
Thus, the tag array area is

A tag = 0 . 6(Ntag_ rows + L sense _amp + L comp)
(Ntag_ col+ Nstat‘us_ col+ I/Vdriuer )rbe ’

where Nisg_coi » Natatus_cot, are the width of tag and status

hits, respectively, and Nug_sow is the number of tags.

<Table 4> shows the chip areas for each I-cache mo-
del with 32-byte and 64-byte-block in rbe. In general,
large block size causes the overall hardware complexities
to be slightly increased, since a sense amplifier is sus-
pended on each bit-line. As shown in <Table 4>, the
increase of block size from 3Zbytes to 64bytes results in
about an average 0.3% hardware cost increase. The hard-
ware complexity of BANK is 14 times in a 32-byte
cache block, and 2.7 times in a 64-byte cache block, as
large as that of the CONV. This is due to the increase of
the area for sense amplifiers, tag comparator and decoder.
The increase of hardware complexity in the EXP is
mainly due to the expansion buffer. The EXPs with 16,
32, and 64 buffer entries give cost increases of 1.7%, 2.9
9, and 5.3%, respectively, compared to the CONV, while
the BANK induces an average 2% cost increase.

{Table 4y Chip areas for 32 byte-block and 64 byte-block

|-caches
CONV | BANK | EXP-16 | EXP-32 | EXP-64
32Bytes | 99795 101177 101544 102728 105082
64Bytes 99891 102598 101624 102797 105132
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(b) 64-byte cache block

(Figure 10) Evaluating |-cache systems using Delay - Power -
Area metric

It is very difficult to establish one concise and clear
metric, which combines all three factors of memory
access latency, power consumption, and hardware cost.
This is because the weight of each factor varies accor-
ding to the processor design philosophy. In this study, it
is supposed that all the factors have the same weighting.
A new metric, Delay-Power-Area, which is the product of
the norrnalized memory access latency, power consump-
tion and chip area by those of the CONV, is presented to
evaluate each I-cache model. As shown in (Figure 10),
the EXP reduces the Delay-Power-Area in the CONV by
about 7.8%, while the BANK increases it by 18%.

5. Conclusion

It is very important, with respect to power consumption
and execution performance, to deliver instructions effi-
ciently to the ILP processor. However, the variable length
I-packet is an obstacle to the instruction supply for the
VLIW processor. This is because a fetch of a straddle
I-packet, which lies over two cache blocks due to the
variable I-packet length, requires two cache accesses in
the conventional I-cache. In order to solve this problem,
the bank cache, which consists of two cache banks,
stores instruction blocks by tumn in each bank. It can
remove the double accesses due to the straddle I-packet,
but it requires an additional pipeline stage, which induces
high misprediction penalty. In addition, the unnecessary
cache accesses are increased by two-bank accesses and
the delayed detection of misprediction.
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In this paper, an expansion buffer cache is introduced
to improve the instruction fetch bandwidth from the I-
cache. It has a small expansion buffer, which contains a
fraction of straddle I-packet, which, along with the main
cache, avoids the sequential successive block accesses. A
three-width expansion buffer can reduce the number of
double accesses by an average 61%~85%, depending on
the number of buffer entries in the four-issue VLIW ma-
chine. Thus, the expansion buffer cache achieves a reduc-
tion of 3%~8% in the memory access latency. In addi-
tion, the power consumption decreases in the expansion
buffer cache because it decreases unnecessary cache ac—
cesses. In this study, the expansion cache buffer is mea-
sured with an integrated metric, Delay - Power - Area, to
make an evaluation by combining three important factor
s : memory access latency, power dissipation, and hard-
ware cost. Simulation results show that, compared with
the direct-mapped and two-way set associative cache, the
expansion buffer cache with 32-entry buffer makes 4% ~8
% and 17%~19% improvements to the Delay - Power *
Area, respectively.
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