Mono- and Multi-layer Langmuir-Blodgett Films of Maleimide Polymers Possessing Nonlinear Optical-Active Side Chains

  • Yoon Kuk Ro (Department of Chemisty, Sogang University) ;
  • Lee Hoosung (Department of Chemisty, Sogang University) ;
  • Rhee Bum Ku (Department of Physics, Sogang University) ;
  • Jung Changsoo (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology)
  • Published : 2004.12.01

Abstract

A copolymer P[OSA-MI] was synthesized by copolymerization of its corresponding monomers, N-phenyl maleimide (MI) and 2-octen-l-ylsuccinic anhydride (OSA). The polymer (poly[2-[1-(2,5-dioxo-l-phenylpyrroli­din-3-ylmethyl)heptyl]-succinic acid 4-(2-$\{$ethyl-[4-(4-nitrophen-ylazo)phenyl]amino$\}$ethyl)ester]) P[DR1MA-MI] was obtained from the reaction of P[OSA-MI] with 2-[4-(4-nitrophenylazo)-N-ethylphenylamino] ethanol (DR1). A stable monolayer of P[DRIMA-MI] was formed by spreading the solution of the polymer in chloroform. In Y-type Langmuir-Blodgett (LB) films prepared using this Langmuir-Blodgett method, the second harmonic waves generated from adjacent mono layers canceled each other out. In X-and Z-type LB films, the second harmonic intensity increased upon increasing the number of monolayers, but this increase was somewhat smaller than predicted by the square law. This phenomenon is due to defects or imperfect alignment of the dipoles in the LB film. The generation of second harmonic waves from Y-type LB films having an even number of mono layers supports this argument. The degree of imperfection seemed to increase as the number of layers increased. The second-order nonlinear optical properties of spin-cast films of these polymers were also measured. The largest second harmonic coefficient of the poled P[DRIMA-MI] film coated on a glass plate was 19 pm/V.

Keywords

References

  1. D. J. Williams, Angew. Chem., Int. Ed. Engl., 23, 690 (1984)
  2. J. L. J. Oudar, Chem. Phys., 67, 446 (1997)
  3. S. Schader, D. Prescher, and V. Zauls, Proc. SPIE, 3474, 160 (1998)
  4. S. Xie S, A. Natansohn, and P. Rochon, Chem. Mater., 5, 403 (1993)
  5. M. L. Schilling and H. E. Katz, Chem. Mater., 1, 668 (1989)
  6. W. N. Herman and L. M. Hayden, J. Opt. Soc. Am. B, 12, 416(1995)
  7. E. Stenhagen, Determination of Organic Structures by Physical Methods , E. A. Braunde and F. C. Nachod, Eds., Academic Press, New York, 1955
  8. J. Jerphagnon and S. Kurtz, J. Appl. Phys., 41, 1667 (1970)
  9. J. Jerphagnon and S. Kurtz, Phys. Rev. B, 1, 1739 (1970)
  10. T. Wada, Kobubschi , 45, 682 (1996)
  11. J. -Y. Lee, H. -B Bang, C. S. Baek, E. -J. Park, B. K. Rhee, and S. M. Lee, Bull. Korean Chem. Soc., 25, 605 (2004)
  12. M. H. Kim, J.-I. Jin, C. J. Lee, N. Kim, and K. H. Park, Bull. Korean Chem. Soc. , 23, 964 (2002)
  13. A. Ulman, Characterization of Organic Thin Films, Manning, Greenwich, 1995
  14. R. Aveyard and R. Haidon, An Introduction to the Principles of Surface Chemistry, Cambrigde University Press, 1973
  15. C. M. Knobler and D. K. Schwartz, Curr. Opin. Colloid Inteiface Sci., 4, 46 (1999)
  16. C. M. Knobler, Adv. Chem. Phys., 77, 397 (1990)
  17. R. Popovitz-Biro, R. Edgar, and I. Weissbuch, Acta Polym., 49, 626 (1998)
  18. M. Matsumoto, Y. Tsujii, K. I. Nakamura, and T. Yoshimoto, Thin Solid Films, 280, 238 (1996)
  19. J. T. Buontempo and F. A. Novak, Rev. Sci. Instrum., 63, 6707 (1992)
  20. K. Y. C. Lee, M. M. Lipp, D. Y. Dawn, E. Ter-Ovanesyan, J. A. Zasadzinski, and A. J. Waring, Langmuir, 14, 2567 (1998)
  21. K. Halperin, J. B. Ketterson, and P. Dutta, Langmuir, 5, 161 (1989)
  22. B. A. Pethica, Thin Solid Films, 152, 3 (1987)
  23. R. M. Kenn, C. Bohm, and A. M. Bibo, J. Phys. Chem., 95, 2092 (1991)
  24. J. L. Cisneros JI, Appl. Opt., 37, 5262 (1998)
  25. A. Dhanabalan, R. B. Dabke, and S. S. Talwar, et al., Langmuir, 13, 4395 (1997)
  26. A. Dhanabalan, S. V. Mello, and O. N. Oliveira, Macromolecules, 31, 1827 (1998)
  27. A. Dhanabalan, D. T. Balogh, A. Riul, J. A. Giacometti, and O. N, Oliveira, Thin Solid Films, 323, 257 (1998)
  28. S. Ravaine, C. Mingotaud, and P. Delhaes, Thin Solid Films, 284,76 (1996)
  29. S. K. Gupta, D. M. Taylor, P. Dynarowicz, E. Barlow, C. E A. Wainwright, and A. E. Underhill, Langmuir, 8, 3057 (1992)
  30. S. K. Gupta, D. M. Taylor, A. E. Underhill, and C. E. A. Wainwright, Synth. Met., 58, 373 (1993)
  31. A. V. Hughes, J. A. Rees, D. M. Taylor, and A. E. Underhill, Supramolecular Sci., 4, 309 (1997)
  32. A. V. Hughes, D. M. Taylor, and A. E. Underhill, Langmuir, 15, 2472 (1999)
  33. R. C. Ahuja, P. L. Caruso, and D. Mobius, et al., Thin Solid Films, 284, 671 (1996)
  34. A. P. H. J. Schenning, C. Elissen-Roman, J. W. Weener, M. W. P. L. Baars, S. J. van der Gaast, and E. W. Meijer, J. Am. Chem. Soc., 120, 8199 (1998)
  35. J. Janietz, R. C. Ahuja, and D. Mobius, Langmuir, 13, 305 (1997)
  36. C. Jung and B. K. Rhee, Appl. Opt., 41, 3861 (2002)
  37. A. S. Martin, S. J. Lawrence, D. A. Rollet, and J. R. Sambles, Eur. J. Phys., 14, 19 (1993)