Influence of Tectonic Uplift on Longitudinal Profiles of Bedrock Rivers: Numerical Simulations

융기가 기반암 하상하천의 종단곡선에 미치는 영향에 대한 연구 -수리 모형을 통한 연구-

  • Kim Jong Yeon (Department of Geography & Geomatics, University of Glasgow)
  • Published : 2004.12.01

Abstract

Longitudinal profiles of bedrock rivers play a fundamental role in landscape history by setting the boundary conditions for landform evolution. Longitudinal profiles are changed with climatic conditions, lithology and tectonic movements. Tectonic movement is an important factor controlling longitudinal profiles, especially in tectonically active area where uplift rates are regarded as a major factor controlling channel gradient. However study on bedrock channel has made little progress, because controls over bedrock river incision are yet to be clarified. Previous numerical simulations have used a simple diffusion model, which links together the overall processes of bedrock channel erosion as in other landform evolution models. In this study, previous bedrock incision models based on physical processes (especially abrasion) are reviewed and new modifications are introduced. Using newly formulated numerical model, the role of spatial pattern and intensity of tectonic uplift on changes in river longitudinal profile was simulated and discussed.

기반암 하상 하천의 종단 곡선은 지형 경관 발달의 기본 조건을 형성함으로서 경관 변화에 강력한 영향을 행사한다. 하천 종단 곡선은 기후 환경 조건의 변화, 기반암의 물리 화학적 특성, 지각 운동과 같은 변수들에 의해서 그 형태의 변화를 경험하게 된다. 특히 지각 운동의 시 공간적 양상은 지각 운동이 활발한 혹은 활발했던 것으로 알려진 지역에서 종단곡선에 강력한 영향력을 행사하는 것으로 추론되어 왔다. 그러나, 현재까지의 기반암 하상 하천에 대한 연구는 기반암 하상 하천의 침식 작용을 통제하는 변수들에 대한 이해의 부족으로 답보상태를 면하지 못하여 왔다. 현대 지형학의 주요 연구 기법인 컴퓨터를 이용한 지형 발달 시뮬레이션은 지형 발달의 단계들을 파악하는데 유용한 연구 도구로 환용 되어 왔으나. 기반암 하상 하천의 경우 그 이해의 부족으로 인하여 광범위한 응용이 가능한 모형의 마련에 어려움을 겪어 왔다. 그 결과 기존의 연구들은 단순한 확산 모형을 침식의 기본 모형으로 이용했다. 본 고 에서는 물리적 침식과정에 기반한 기반암 침식 모형들을 검토 수정한 새로운 모형을 소개하고 해당 모형을 이용하여 지각운동의 시 공간적 분포와 강도가 하천 종단 곡선에 미치는 영향을 시뮬레이션을 통해 모사하고 논의하였다.

Keywords

References

  1. Abbott, J.E. and Francis, J.R.D.,1977, Saltation and suspension trajectories of solid grains in a water stream, Philosophical transactions of the Royal Society of London, 284(A), 225-254
  2. van der Beek, P. and Bishop, P., 2003, Cenozoic river profile development in the Upper Lachlan catchment (SE Australia) as a test of quantitative fluvial incision models, Journal of Geophysical Research, 108(B), doi:10.1029/2002JB002125
  3. Bitter, J.G.A., 1963, A study of erosion phenomena: Part 1, Wear, 6, 5-21
  4. Burbank, D.W., Leland, J., Fielding, E., Anderson, R.S., Brozovic, N., Reid, M.R., and Duncan, C., 1996, Bedrock incision, rock uplift, and threshold hillslopes in the northwestern Himalaya, Nature, 379,505-510
  5. Day, M.L 1980, Rock hardness: field assessment and geomorphic importance, Professional Geographer, 32, 72-81. Foley, M.G., 1980, Bedrock incision by streams, Geological Society of America Bulletin, 91 (part 2),2189-2213
  6. Francis, J.R.D., 1973, Experiments on the motion of solitary grains along the bed of a water-stream, Philosophical transactions of the Royal Society of London, 332(A),443-471
  7. Gilbert, GK, 1914, The transportatation of debris by running water, U.S. Geological Survey, Professional Paper, 86
  8. Hack, J.T., 1973,Stream profile analysis and stream-gradient index, Journal of Research, U.S. Geological Survey, 1,421-429
  9. Hancock, GS., Anderson, R.S., and Whipple, KX., 1998, Beyond power: bedrock river incision process and form, in Tinkler, KJ. and Wohl, E.E. (Eds.), Rivers over Rock: Fluvial Processes in Bedrock Channels, American Geophysical Union, Washington
  10. Humphrey, N.F. and Konrad, SK, 2000, River incision or diversion in response to bedrock uplift, Geology, 28, 43-46
  11. Hussainova, I.K.I, 1999,Investigation of particle-wall impact process, Wear, 233-235, 168-173
  12. Jullien, P.Y., 1995, Erosion and Sedimentation, Cambridge University Press, Cambridge
  13. Kirby, E. and Whipple, K.X., 2001, Quantifying differential rock-uplift rates via stream profile analysis, Geology, 29, 415-418
  14. Kooi, H. and Beaumont, C., 1994,Escarpment evolution on high-elevation rifted margins: Insights derived from a surface processes model that combines diffusion, advection, and reaction, Journal of Geophysical Research, 99(B),12191-12209
  15. Koons, P.O., 1989,The topographic evolution of collisional mountain belts: a numerical look at the Southern Alps, New Zealand, American Journal of Science, 289, 1041-1069
  16. Massong, T.M. and Montgomery, D.R., 2000, Influence of sediment supply, lithology, and wood debris on the distribution of bedrock and alluvial channels, Geological Society of America Bulletin, 112,591-599
  17. Montgomery, D.R. and Buffington, J.M., 1997, Channel-reach morphology in mountain drainage basins, Geological Society of America Bulletin, 109,596-611
  18. Murphy, P.J. and Hooshiari, H., 1982, Saltation in water dynamics, journal of Hydraulic Engineering, 108,1251-1267
  19. Nino, Y., Garcia, M. and Ayala, L., 1994, Gravel saltation: experiment, Water Resources Research, 30, 1907-1914
  20. Pazzaglia, F. J. and Brandon, M.T., 2001, A fluvial record of longterm steady-state uplift and erosion across the Cascadia forearc high, Western Washington state, American journal of Science, 301,385-431
  21. Righter, K, 1997,High bedrock incision rates in the Atenguillo river valley, Jarisco, Western Mexico, Earth Surface Processes and Landforms, 22,337-343
  22. Seidl, M.A., Dietrich, W.E. and Kirchner, JW., 1994, Longitudinal profile development into bedrock: an analysis of Hawaiian channels, Journal of Geology, 102,457-474
  23. Selby, M. J., 1980, A rock mass strength classification for geomorphic purposes: with tests from Antartica and New Zealand, Zeitschrift fur Geomorphologie, 24, 31-51
  24. Shimizu, K, Noguchi, T., Seitoh, H., and Muranaka, E., 1999, FEM analysis of the dependency on impact angle during erosive wear, Wear, 233-235,157-159
  25. Sklar, L.S. and Dietrich, W.E., 1998, River longitudinal profiles and bedrock incision models: streampower and the influence of sediment supply, in Tinkler, KJ. and Wohl, E.E. (eds.), Rivers over Rock: Fluvial Processes in Bedrock Channels, American Geophysical Union, Washington
  26. Sklar, L.S. and Dietrich, W.E., 2004, A mechanistic-model for river incision into bedrock by saltating bed load, Water Resources Research, 40, doi:10.1029/2003WR002496
  27. Snyder, N.P., Whipple, K.X., Tucker, G.B. and Merritts, D,J., 2003, Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California, Geomorphology, 53, 97-127
  28. Tomkin, J.H., Brandon, M.T., Panzzaglia, F.J., Barbour, J.R. and Willett, S.D., 2003, Quantitative testing of bedrock incision models for the Clearwater River, NW Washington State, Journal of Geophysical Research, 108(B), doi:10.1029/2001JB000862
  29. Whipple, KX. and Tucker, G.E., 1999, Dynamics of the stream-power river incision model: implication for the height limits of mountain ranges, landscape response time scales, and research needs, Journal of Geophysical Research, 104(B),17661-17674
  30. Whipple, K.X., 2001, Fluvial landscape response time: how plausible is steady-state denudation, American Journal of Science, 301,313-325
  31. Wiberg, P.L and Smith, J.D., 1985, A theoretical model for saltating grains in water, Journal of Geophysical Research, 90(C),7341-7354 https://doi.org/10.1029/JC090iC04p07341
  32. Wahl, E.E. and Ikeda, H., 1998, Patterns of bedrock channel erosion on the Boso Peninsula, Japan, Journal of Geology, 106,331-345
  33. Foley, M.G., 1980, Bedrock incision by streams, Geological Society of America Bulletin, 91 (part 2),2189-2213