DOI QR코드

DOI QR Code

Alu sequences and molecular features

Alu 서열과 분자생물학적 특징

  • Park Eun-Sil (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Hong Kyung-Won (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim Heui-Soo (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
  • Published : 2004.12.01

Abstract

During the past 65 million years, Alu sequences have been amplified through RNA-polymerase IIIderived transcripts, and have reached the copy number of about 1.4 million in primate genomes. They are the largest family among mobile genetic elements in human genome and consist of ten percent of the human genome. Alu sequences are thought to be functionless genetically, but many researchers have proved new function and disease implication. Alu elements make the genome insertional mutation, Alu-mediated recombination events, and unexpected splicing site and change gene structures, protein sequences, splicing motifs and expression patterns. In this review, the structure and origin of Alu, consensus sequences of Alu subfamilies, evolution and distribution of Alu, and their related diseases were described. We also indicated new research direction of Alu elements in relation to evolution and disease.

6500만년동안, Alu 서열은 RNA-중합효소 III에 의한 전사체를 통해 증폭해왔고, 영장류 게놈 내에 약 140만 복사의 수에 도달되었다. 그들은 가동성 인자 중에서 가장 큰 집단이며, 인간 게놈의 $10\%$를 구성한다. Alu 서열이 유전적으로 기능이 없다고 생각되었지만, 최근 많은 연구자들이 새로운 기능 및 질병과의 관련성을 증명해왔다 이들 Alu 서열은 삽입돌연변이, Alu-매개 재조합, 유전자 발현에 대해 유전자 전환 그리고 스플라이싱 사이트를 유발하고, 유전자 구조, 단백질 서열, 스플라이싱 모티프와 발현 양상에 영향을 준다. 우리는 Alu의 구조와 기원, 그들 패밀리의 컨센서스 서열, Alu의 진화와 분포 그리고 그들의 기능에 대하여 요약 정리하였다. 또한 영장류의 진화과정에 있어 질병과 관련하여 Alu 패밀리의 새로운 연구방향을 제시하였다.

Keywords

References

  1. Batzer, M. A., P. L. Deininger, U. Hellmann-Blumberg, J. Jurka, D. Labuda, C. M. Rubin, C. W. Schmid, E. Zietkiewicz and E. Zuckerkandl. 1996. Standardized nomenclature for Alu repeats. J. Mol. Evol. 42, 3-6 https://doi.org/10.1007/BF00163204
  2. Batzer, M. A. and P. L. Deininger. 2002. Alu repeats and human genomic diversity. Nat. Rev. Genet. 3, 370-379 https://doi.org/10.1038/nrg798
  3. Bernardi, G. 2001. Misunderstandings about isochores. Gene 276, 3-13 https://doi.org/10.1016/S0378-1119(01)00644-8
  4. Boeke, J. D. 1997. LINEs and Alus the polyA connection. Nature Genet. 16, 6-7 https://doi.org/10.1038/ng0597-6
  5. Britten, R. J. 1994. Evidence that most human Alu sequences were inserted in a process that ceased about 30 million years ago. Proc. Natl. Acad. Sci. USA 91, 6148-6150 https://doi.org/10.1073/pnas.91.13.6148
  6. Brookfield, J. F. 2001. Selection on Alu sequences? Curr. Biol. 11, 900-901
  7. Chae, J. J., Y. B. Park, S. H. Kim, S. S. Hong, G. J. Song, K. H. Han, Y. Namkoong, H. S. Kim and C. C. Lee, 1997. Two partial deletion mutations involving the same Alu sequence within intron 8 of the LDL receptor gene in Korean patients with familial hypercholesterolemia. Hum. Genet. 99, 155-163 https://doi.org/10.1007/s004390050331
  8. Chen, C. A., J. Gentles, J. Jurka and S. Karlin. 2002. Genes, pseudogenes, and Alu sequence organization across human chromosomes 21 and 22. Proc. Natl. Acad. Sci. USA 99, 2930-2935 https://doi.org/10.1073/pnas.052692099
  9. Dagan., T, R. Sorek, E. Sharon, G. Ast and D. Graur. 2004. AluGene: a database of Alu elements incorporated within protein-coding genes. Nucleic Acids Res. 32, D489-492
  10. Deininger, P. L. and V. K. Slagel, 1988. Recently amplified Alu family members share a common parental Alu sequence. Mol. Cell. Biol. 8, 4566-4569
  11. Deininger, P. L., M. A. Batzer , C. A. Hutchison and M. H. Edgell. 1992. Master genes in mammalian repetitive DNA amplification. Trends Genet. 8, 307-311 https://doi.org/10.1016/0168-9525(92)90262-3
  12. Deininger, P. L. and M. A. Batzer. 1999. Alu repeats and human disease. Mol. Genet. Metab. 67, 183-193 https://doi.org/10.1006/mgme.1999.2864
  13. Feng, Q., J. V. Moran, H. H. Kazazian. Jr and J. D. Boeke. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87, 905-916 https://doi.org/10.1016/S0092-8674(00)81997-2
  14. Flint, J., J. Rochette, C. F. Craddoc, C. Dode, B. Vignes, S. W. Horsley, L. Kearney, V. J. Buckle, H. Ayyub and D. R. Higgs. 1996. Chromosomal stabilisation by a subtelomeric rearrangement involving two closely related Alu elements. Hum. Mol. Genet. 5, 1163-1169 https://doi.org/10.1093/hmg/5.8.1163
  15. Ganguly, A., T. Dunbar, P. Chen, L. Godmilow and T. Ganguly. 2003. Exon skipping caused by an intronic insertion of a young Alu Yb9 element leads to severe hemophilia A. Hum. Genet. 113, 348-352 https://doi.org/10.1007/s00439-003-0986-5
  16. Grover, D., M. Mukerji, P. Bhatnagar, K. Kannan and S. K. Brahmachari. 2004. Alu repeat analysis in the complete human genome: trends and variations with respect to genomic composition. Bioinformatics 20, 813-817 https://doi.org/10.1093/bioinformatics/bth005
  17. Hilgard, P., T. Huang, A. W. Wolkoff and R. J. Stockert. 2002. Translated Alu sequence determines nuclear localization of a novel catalytic subunit of casein kinase 2. Am. J. Physiol. Cell Physiol. 283, C472-C483 https://doi.org/10.1152/ajpcell.00070.2002
  18. Houck, C. M., F. P. Rinehart and C. W. Schmid. 1979. A ubiquitous family of repeated DNA sequences in the human genome. J. Mol. Biol. 132, 289-306 https://doi.org/10.1016/0022-2836(79)90261-4
  19. Hutchinson, G. B., S. E. Andrew, H. McDonald, Y. P. Goldberg, R. Graham, J. M. Rommens and M. R. Hayden. 1993. An Alu element retroposition in two families with Huntington disease defines a new active Alu subfamily. Nucleic Acids Res. 21, 3379-3383 https://doi.org/10.1093/nar/21.15.3379
  20. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. 2001. An assembly and annotation of the first draft sequence of the entire human genome that includes a comprehensive analysis of repeated DNA sequences. Nature 409, 860-921 https://doi.org/10.1038/35057062
  21. Jurka, J. and T. Smith. 1988. A fundamental division in the Alu family of repeated sequences. Proc. Natl. Acad. Sci. U S A. 85, 4775-4778 https://doi.org/10.1073/pnas.85.13.4775
  22. Jurka, J. 1993. A new subfamily of recently retroposed Alu repeats. Nucleic Acids Res. 21, 2252 https://doi.org/10.1093/nar/21.9.2252
  23. Jurka, J. and P. Klonowski. 1996. Integration of retroposable elements in mammals: selection of target sites. J. Mol. Evol. 43, 685-689 https://doi.org/10.1007/BF02202117
  24. Jurka, J. 2000. Repbase update: A database and an electronic journal of repetitive elements, Trends Genet. 16, 418-420 https://doi.org/10.1016/S0168-9525(00)02093-X
  25. Jurka, J., M. Krnjajic, V. V. Kapitonov, J. E. Stenger and O. Kokhanyy. 2002. Active Alu elements are passed primarily through paternal germlines. Theor. Popul. Biol. 61, 519-530 https://doi.org/10.1006/tpbi.2002.1602
  26. Jurka, J., O. Kohany, A. Pavlicek, V. V. Kapitonov and M. V. Jurka. 2004. Duplication, coclustering, and selection of human Alu retrotransposons. Proc. Natl. Acad. Sci. U S A. 101, 268-272
  27. Kapitonov, V. and J. Jurka. 1996. The age of Alu subfamilies. J. Mol. Evol. 42, 59-65 https://doi.org/10.1007/BF00163212
  28. Knebelmann, B., L. Forestier, L. Drouot, S. Quinones, C. Chuet, F. Benessy, J. Saus and C. Antignac. 1995. Splice-mediated insertion of an Alu sequence in the COL4A3 mRNA causing autosomal recessive Alport syndrome. Hum. Mol. Genet. 4, 675-679 https://doi.org/10.1093/hmg/4.4.675
  29. Kolomietz, E., M. S. Meyn, A. Pandita and J. A. Squire. 2002. The role of Alu repeat clusters as mediators of recurrent chromosomal aberrations in tumors. Genes Chromosomes Cancer 35, 97-112 https://doi.org/10.1002/gcc.10111
  30. Korenberg, J. R. and M. C. Rykowski. 1988. Human genome organization: Alu, lines, and the molecular structure of metaphase chromosome bands. Cell 53, 391-400 https://doi.org/10.1016/0092-8674(88)90159-6
  31. Lander, E. S., L. M. Linton, B. Birren, C. Nusbaum, M. C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh et al. 2001 M. itial sequencing and analysistzHughe human genome. Nature 409, 860-921 https://doi.org/10.1038/35057062
  32. Le Goff, W., M. Guerin, M. J. Chapman and J. Thillet. 2003. A CYP7A promoter binding factor site and Alu repeat in the distal promoter region are implicated in regulation of human CETP gene expression. J. Lipid Res. 44, 902-910 https://doi.org/10.1194/jlr.M200423-JLR200
  33. Lev-Maor, G., R. Sorek, N. Shomron and G. Ast. 2003. The birth of an alternatively spliced exon: 3' splice-site selection in Alu exons. Science 300, 1288-1291 https://doi.org/10.1126/science.1082588
  34. Li, L. and P. F. Bray. 1993. Homologous recombination among three intragene Alu sequences causes an inversion-deletion resulting in the hereditary bleeding disorder Glanzmann thrombasthenia. Am. J. Hum. Genet. 53, 140-149
  35. Li, T. H. and C. W. Schmid. 2004. Alu's dimeric consensus sequence destabilizes its transcripts. Gene 324, 191-200 https://doi.org/10.1016/j.gene.2003.09.036
  36. Li, W. H., Z. Gu, H. Wang and A. Nekrutenko. 2001. Evolutionary analyses of the human genome. Nature 409, 847-849 https://doi.org/10.1038/35057039
  37. Makalowski, W., G. A. Mitchell and D. Lauda. 1994. Alu sequences in the coding regions of mRNA: A source of protein variability. Trends Genet. 10, 188-193 https://doi.org/10.1016/0168-9525(94)90254-2
  38. Matera, A. G., U. Hellmann and C. W. Schmid. 1990. A transpositionally and transcriptionally competent Alu subfamily. Mol. Cell. Biol. 10, 5424-5432
  39. Mathias, S. L., A. F. Scott, H. H. Jr. Kazazian, J. D. Boeke and A. Gabriel. 1991. Reverse transcriptase encoded by a human transposable element. Science 254, 1808-1810 https://doi.org/10.1126/science.1722352
  40. Mazzarella, R. and D. Schlessinger. 1997. Duplication and distribution of repetitive elements and non-unique regions in the human genome. Gene 205, 29-38 https://doi.org/10.1016/S0378-1119(97)00477-0
  41. Mighell, A. J., A. F. Markham and P. A. Robinson. 1997. Alu sequences. FEBS Lett. 417, 1-5 https://doi.org/10.1016/S0014-5793(97)01259-3
  42. Mitchell, G. A., D. Labuda, G. Fontaine, J. M. Saudubray, J. P. Bonnefont, S. Lyonnet, L. C. Brody, G. Steel, C. Obie and D. Valle. 1991. Splice-mediated insertion of an Alu sequence inactivates ornithine delta-aminotransferase: a role for Alu elements in human mutation. Proc. Natl. Acad. Sci. USA 88, 815-819. https://doi.org/10.1073/pnas.88.3.815
  43. Nekrutenko, A. and W. H. Li. 2001. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 17, 619-621 https://doi.org/10.1016/S0168-9525(01)02445-3
  44. Norris, J., D. Fan, C. Aleman, J. R. Marks, P. A. Futreal, R. W. Wiseman, J. D. Iglehart, P. L. Deininger and D. P. McDonnell. 1995. Identification of a new subclass of Alu DNA repeats which can function as estrogen receptordependent transcriptional enhancers. J. Biol. Chem. 270, 22777-22782 https://doi.org/10.1074/jbc.270.39.22777
  45. Pavlicek, A., K. Jabbari, J. Paces, V. Paces, J. V. Hejnar and G. Bernardi. 2001. Similar integration but different stability of Alus and LINEs in the human genome. Gene 276, 39-45 https://doi.org/10.1016/S0378-1119(01)00645-X
  46. Ricci, V., S. Regis, M. Di Duca and M. Filocamo. 2003. An Alu mediated rearrangement as cause of exon skipping in Hunter disease. Hum. Genet. 112, 419-425
  47. Roy, A. M., M. L. Carroll, S. V. Nguyen, A. H. Salem, M. Oldridge, A. O. M. Wilkie, M. A. Batzer and P. L. Deininger. 2000. Potential gene conversion and source genes for recently integrated Alu elements. Genome Res. 10, 1485-1495 https://doi.org/10.1101/gr.152300
  48. Roy-Engel, A. M., M. L. Carrol, E. Vogel, R. K. Garber, S. V. Nguyen, A. H. Salem, M. A. Batzer and P. L. Deininger. 2001. Alu insertion polymorphisms for the study of human genomic diversit. Genetics 159, 279-290
  49. Roy-Engel, A. M., M. L. Carroll, M. El-Sawy, A. H. Salem, R. K. Garber, S. V. Nguyen, P. L. Deininger and M. A. Batzer. 2002. Non-traditional Alu evolution and primate genomic diversity. J. Mol. Biol. 316, 1033-1040 https://doi.org/10.1006/jmbi.2001.5380
  50. Roy-Engel, A. M., A. H. Salem, O. O. Oyeniran , P. L. Deininger, D. J. Hedges, G. E. Kilroy, M. A. Batzer and P. L. Deininger. 2002. Active Alu element 'A-tails': size does matter. Genome Res. 12, 1333-1344 https://doi.org/10.1101/gr.384802
  51. Salem, A. H., G. E. Kilroy, W. S. Watkins , L. B. Jorde and M. A. Batzer. 2003. Recently integrated Alu elements and human genomic diversity. Mol. Biol. Evol. 20, 1349-1361 https://doi.org/10.1093/molbev/msg150
  52. Schmid, C. W. 1996. Alu: structure, origin, evolution, significance and function of one- tenth of human DNA. Prog. Nucleic Acid Res. Mol. Biol. 53, 283-319 https://doi.org/10.1016/S0079-6603(08)60148-8
  53. Singer, M. F. 1982. SINEs and LINEs: highly repeated short and long interspersed sequences in mammalian genomes. Cell 28, 433-434 https://doi.org/10.1016/0092-8674(82)90194-5
  54. Sorek, R., G. Ast and D. Graur. 2002. Alu-containing exons are alternatively spliced. Genome Res. 12, 1060-1067 https://doi.org/10.1101/gr.229302
  55. Ullu, E. and C. Tschudi. 1984. Alu sequences are processed 7SL RNA genes. Nature 312, 171-172 https://doi.org/10.1038/312171a0
  56. Vansant, G. and W. F. Reynolds. 1995. The consensus sequence of a major Alu subfamily contains a functional retinoic acid response element. Proc. Natl. Acad. Sci. USA 92, 8229-8233 https://doi.org/10.1073/pnas.92.18.8229
  57. Vervoort, R., R. Gitzelmann, W. Lissens and I. Liebaers. 1998. A mutation (IVS8+0.6kbdelTC) creating a new donor splice site activates a single nucleotide polymorphisms within Alus, as well as a cryptic exon in an Alu-element in intron 8 of the human b-glucuronidase gene. Hum. Genet. 103, 686-693
  58. Vidaud, D., M. Vidaud, B. R. Bahnak, V. Siguret, S. Sanchez, Y. Laurian, D. Meyer, M. Goosens and J. M. Lavergne. 1993. Haemophilia B due to a de novo insertion of a human-specific Alu subfamily member within the coding region of the factor IX gene. Eur. J. Hum. Genet. 1, 30-36