DOI QR코드

DOI QR Code

Characterization of RAD3 Homologous Gene from Coprinus cinereus

균류 Coprinus cinereus에서 DNA 회복에 관여하는 RAD3 유사유전자의 분리와 특성

  • Published : 2004.12.01

Abstract

The RAD3 gene of Saccharomyces cerevisiae is essential for the incision step of UV-induced excision repair. An yeast RAD3 gene has been previously isolated by functional complementation. In order to identify the RAD3 homologous gene from fungus Coprinus cinereus, we have constructed cosmid libraries from electrophoretically separated chromosomes of the C. cinereus. The 13 C. cinereus chromosomes were resolved by pulse-field gel electrophoresis, hybridized with S. cerevisiae RAD3 DNA, and then isolated RAD3 homologous DNA from C. cinereus chromosome. The RAD3 homolog DNA was contained in 3.2 kb DNA fragment. Here, we report the results of characterization of a fungus C. cinereus homolog to the yeast RAD3 gene. Southern blot analysis confirmed that the C. cinereus chromosome contains the RAD3 homolog gene and this gene exists as a single copy in C. cinereus genome. When total RNA isolated from the C. cinereus cells were hybridized with the 3.4 kb PvuII DNA fragment of the S. cerevisiae RAD3 gene, transcripts size of 2.8 kb were detected. In order to investigate whether the increase of the amount of transcripts by DNA damaging agent, transcript levels were examined after treating agents to the cells. The level of transcripts were not increased by untraviolet light (UV). This result indicated that the RAD3 homologous gene is not UV inducible gene. Gene deletion experiments indicate that the HRD3 gene is essential for viability of the cells and DNA repair function. These observations suggest an evolutionary conservation of other protein components with which HRD3 interacts in mediating its DNA repair and viability functions.

본 연구는 출아형 효모 Saccharomyces cerevisiae에서 자외선의 상해 시 이를 정상으로 회복시키는 절제회복(excision repair) 유전자로 알려진 RADS의 특성 규명을 위하여 균류 Coprinus cinereus에서 이와 유사한 유전자를 분리하였다. RADS 유사 유전자를 분리하기 위하여 균류 C. cinereus의 염색체 DNA를 전기영동하여 분리한 다음 효모 RADS DNA를 probe로 하여 이와 hybridization하였다. 이 결과 RADS유사 유전자는 3.4kb의 insert DNA를 갖고 있었다. 또한 Southern hybridization으로 이 유사 유전자는 fungus C. cinereus의 염색체에 존재함을 확인하였다. 분리한 RADS 유사 유전자의 전사체 크기는 2.8kb 였으며, 자외선의 상해시 전혀 자외선에 대한 유도성이 없음을 Northern hybridization으로 확인하였다. 또한 유사유전자 부분을 삭제하였을 때 이 부분이 없는 세포는 전혀 생존을 못하였다. 이 결과 분리한 RADS 유사유전자는 세포의 생존에 필수적인 유전자임을 알 수 있었다.

Keywords

References

  1. Guha, S. and W. Guschlbauer. 1992. Expression of Escherichia coli dam gene in Bacillus subtilis provokes DNA damage response: $N^6$-methyadenine is removed by two repair pathways. Nucleic Acids Res. 20(14), 3607-3615 https://doi.org/10.1093/nar/20.14.3607
  2. Hoeijmakers, J. H. J. and D. Bootsma. 1990. Molecular genetics of eukaryotic DNA excision repair. Cancer Cells 2, 311-320
  3. Caldecott, K. W., C. K., McKeown, J. D. Tucker, S. Ljungquist and L. H. Thompson. 1994. An interation between the mammalian DNA repair protein XRCC1 and DNA ligase III. Mol. Cell. Biol. 14, 68-76
  4. Carr, A. M., H. Schmidt, S. Kirchhoff, W. J. Muriel. K. S. Sheldrick, D. J. Griffiths, C. N. Basmacioglu, S. Subramani, M. Clegg, A. Nasim and A. Lehmann. 1994. The rad16 gene of Schzosaccharomyces pombe: A Homolog of the RAD1 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 14, 2029- 2040
  5. Choi, I. S., J. B. Kim and S. D. Park. 1990. Nuc1eotide sequence of RAD3 gene of Saccharomyces cerevisiae that can be propagated in Escherichia coli without inactivation. Nucl.eic Acids Res. 18, 7137 https://doi.org/10.1093/nar/18.23.7137
  6. Choi, I. S., J. B. Kim, S. H. Jeon and S. D. Park. 1993. Expression of RAD3 gene of Saccharomyces cerevisiae that can be propagated in Escherichia coli without inactivation. Biochem. Biophy. Res. Commu. 193(1), 91-197
  7. Kim, J. B., S. H. Jeon, I. S. Choi and S. D. Park. 1994. Overexpressed RAD3 protein required for excision repair of Saccharomyces cerevisiae is toxic to the host Escherichia coli. In Vitro Toxicology 7(3), 269-275
  8. Zolan, M. E., J. Crittenden, N. K. Heyler and L. C. Seitz. 1992. Efficient isolation and mapping of rad genes of the fungus Coprinus cinereus using chromosome specific libraries. Nucleic Acids Res. 20(15), 3993-3999 https://doi.org/10.1093/nar/20.15.3993
  9. McCready, S. J., H. Burkill, S. Evans and B. S. Cox. 1989. The Saccharomyces cerevisiae RAD2 gene complements a Schizosaccharomyces pombe repair mutation. Curr. Genet. 15, 27-30 https://doi.org/10.1007/BF00445748
  10. Ito, H. Y. Fukuda, K. Murata and A. Kimmura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168
  11. Jang, Y. K, Y. H. Jin, M. J. Kim, R. H. Seong, S. H. Hong and S. D. Park. 1995. Identification of the DNA damage-responsive elements of the rhp$51^+$ gene, a recA and RAD51 homolog from the fission yeast Schizocaccharomyces pombe. Biochem. Mol. Biol. Int. 37, 337-344
  12. Sanger, F., S. Nicklen and A. R. Coulson. 1977. DNA sequencing with chain termination inhibitors. Proc. Natl. Acad. Sci. USA. 74, 5463-5467 https://doi.org/10.1073/pnas.74.12.5463
  13. Altschul, S. F., W. Gish, W. Miller, E. W. Myers and D. J. Lipman. 1990. Bacic local alignment search tool. J. Mol. Biol. 215, 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  14. Murray, J. M., A. Carr, A. R. Lehmann and F. Z. Watts. 1991. Cloning and characterization of the rad15 gene, a homologue to the S. cerevisiae RAD3 and human ERCC2 gene. Nucleic Acids Res. 19, 3525-3531 https://doi.org/10.1093/nar/19.13.3525
  15. Reynolds, R. J. and E. C. Friedgerg. 1981. Molecular mechanisms of pyrimidine dimer excision of ultraviolet- irradiated deoxyribonucleic acid. J. Bacteriol. 146, 692-704
  16. Reynolds, P. R., S. Biggar, L. Prakash and S. Prakash. 1992. The Shizosaccharomyces pombe rhp$3^+$ gene required for DNA repair and cell viability is functionally interchangeable with the RAD3 gene of Saccharomyces cerevisiae. Nucleic Acids Res. 20(9), 2327-2334 https://doi.org/10.1093/nar/20.9.2327
  17. Choi, I. S. 2003. Characterization of HRD3, a Schizosaccharomyces pombe gene involved in DNA repair and cell viability. Korean J. Biol. Sci. 7, 159-164 https://doi.org/10.1080/12265071.2003.9647699
  18. Thompson, L. H., M. H. Mitchell, J. D. Regan, S. D. Bouffler, S. A. Stewart, W. Carrier, W. L., Nairn and R. T. Johnson. 1988. CHO mutant UV61 removes photoproducts but not cyclobutane dimers. Mutagenesis 4, 140-146 https://doi.org/10.1093/mutage/4.2.140
  19. Van Duin, M., J. De Wit, H. Odijk, A. Westerveld, A. Yasui, M. H. M., Koken, J. H. J. Hoeijmakers and D. Bootsma. 1986. Molecular characterization of the human excision repair gene ERCC1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10. Cell 44, 913-923 https://doi.org/10.1016/0092-8674(86)90014-0
  20. Weber, C. A., E. P. Salazar, S. A Stewart and L. H. Hampton. 1990. ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J. 9, 1437- 1447
  21. Weeda, G., R. C. A. Van Ham, W. Vermeulen, D. Bootsma, A. J. Van Der Eb and J. H. J. Hoeijmakers. 1990. Molecular cloning and biological characterization of the human excision repair gene ERCC3. Cell 62, 6160-6171
  22. Friedberg, E. C. 1988. Deoxyribonucleic acid repair in the yeast Saccharomyces cerevisiae. Microbiol. Rev. 52, 70-102
  23. Baker, S. M., G. P. Margison and P. Striker. 1992. Inducible alkytransferase DNA repair proteins in the filamentous fungus nidulans. Nucleic Acids. Res. 20 (4), 645-651 https://doi.org/10.1093/nar/20.4.645
  24. Brody, H., J. .Griffith, A. Cuticchia, J. Arnold and W. E. Timberlake. 1991. Chromosome specific recombinant DNA libraries from the fungus Aspergillus nidulans. Nucleic Acids. Res. 19(11), 3105-3109 https://doi.org/10.1093/nar/19.11.3105
  25. Fenech, M., A. Carr, J. Murray, F. Z. Watts and A. R. Lehmann. 1991. Cloning and characterization of the RAD3 gene of Schizosaccharomyces pombe; a gene showing short regions of sequence similarity to the human XRCC1 gene. Nucleic Acids Res. 19(24), 6737-6741 https://doi.org/10.1093/nar/19.24.6737