Ca-Ce-Zr-Ti-O System에서의 파이로클로어 합성 및 상관계에 대한 연구

Study on Phase Relation and Synthesis of Pyrochlore in the System of Ca-Ce-Zr-Ti-O

  • 채수천 (한국지질자원연구원 자원활용소재연구부) ;
  • 배인국 (한국지질자원연구원 자원활용소재연구부) ;
  • 장영남 (한국지질자원연구원 자원활용소재연구부) ;
  • Chae Soo-Chun (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Bae In-Kook (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Jang Young-Nam (Minerals and Materials Processing Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Yudintsev S.V. (Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry)
  • 발행 : 2004.12.01

초록

고준위 폐기물 내에 함유된 핵종을 고정화시킬 수 있는 매트릭스로써 파이로클로어$(pyrochlore;\;CaCeZr_xTi_{2-x}O_7,\;x=0.2\~2.0)$를 합성하여 상평형 관계 및 특성을 연구하였다. 합성방법은 CPS법이었으며, $1100\~1600^{\circ}C$에서 20시간 동안 가열하였다. 실험결과, 최적 합성조건은 각각의 조성에 따라 $1300\~1600^{\circ}C$로 다양하였다. 최적 합성조건에서 파이로클로어 또는 형석구조를 나타내는 산화물(이하 '형석'으로 기재)은 소량의 페롭스카이트와 더불어 $CeO_2$ 또는 $Ce_{0.75}Zr_{0.25}O_2$와 공존하였다. 또한 원조성인 $CaCeZr_xTi_{2-x}O_7$$x\leq0.6$인 경우 파이로클로어 구조가, 그리고 $x\geq0.6$에서는 형석구조가 안정한 것을 확인하였다. 특히 x값의 증가에 따라, Ca 및 Ti 성분이 결핍되었으며, 이와는 대조적으로 Zr과 Ce가 초과됨으로써 비화학양론적 조성을 나타내었다. 이러한 특성은 팔배위와 육배위를 차지하고 있는 원소들의 거동에 의한 것으로, 파이로클로어 또는 형석이 단일상이 아니라 페롭스카이트, $CeO_2$$Ce_{0.75}Zr_{0.25}O_2$와 공존하는 원인이 된 것으로 사료된다.

Pyrochlore is known as one of the most promising materials for the immobilization of radionuclide in high level waste. This study included the synthesis, phase relation and characteristics of $pyrochlore(CaCeZr_xTi_{2-x}O_{7,\;x=0.2\~2.0)$ in the system of Ca-Ce-Zr-Ti-O. Using the CPS(Cold pressing and sintering) method, the mixtures of $CaCO3_,\;CeO_2,\;ZrO_2\;and\;TiO_2$ oxides were pressed, and sintered at $1100\~1600^{\circ}C$ for 20 hours. The optimal synthetic conditions at various compositions were differed from 1300 to $1600^{\circ}C$ Even in the optimal temperatures, pyrochlore or fluorite coexisted with minor amount of perovskite, $CeO_2\;or\;Ce_{0.75}Zr_{0.25}O_2$. It was confirmed that pyrochlore and fluorite structures were stable at $x\leq0.6\;and\;x\geq1.0$, respectively. Especially, the compositions of pyrochlore or fluorite showed non-stoichiometric compositions in that contents of Ca and Ti were more deficient and those of Zr and Ce were more excess than batch compositions with the increase of x value. These characteristics stemmed from the behavior of elements occupied at eight- and six-coordinated site, and then caused the coexistence of perovskite, $CeO_2\;or\;Ce_{0.75}Zr_{0.25}O_2$ along with pyrochlore or fluorite.

키워드

참고문헌

  1. 채수천, 배인국, 장영남, Yudintsev, S.V. (2004) Gd-Ti-O계 및 Gd-Zr-O계에서의 파이로클로어 합성연구. 자원환경지질, 37권, p. 303-309.
  2. Begg, B.D., Hess, N.J" McCready, D.E., Thevuthasan, S.,and Weber, w.J, (2001a) Heavy-ion irradiation effectsin Gdz(Tiz.xZrJ07 pryochlore. J, Nuc!. Mat., v. 289, p.188-193.
  3. Begg, B.D., Hess, N.J" Weber, WJ., Devanathan, R., Icenhower,J.P., Thevuthasan, S., and McGrail, B.P.(2001b) Heavy-ion irradiation effects on structuresand acid dissolution of pyrochlore. J. Nucl. Mat., v.228, p. 208-216.
  4. Feighery, A.J" Irvine, J.T.S., and Zheng, S. (2001) Phaserelation at 1500°C in the ternary system ZrOz-Gdz03'no, J, Solid State Chern., v. 160, p. 302-306.
  5. Kulkarni, N.K., Sampath, S. and Venugopal, V. (2000)Preparation and characterisation of Pu-pyrochlore:[Lal_xPuxjzZrZ07 (x=O-I). J. Nuc!. Mat., v. 281, p. 248250.
  6. Laverov, N.P., Yudintsev, S.v., Stefanovsky, S.v., and jang,Y.N. (2001) New actinide matrix with pyrochlorestructure. Doklady of the Russian Academy of Sciences,381A, v. 9, p. 1053-1056.
  7. Laverov, N.P., Yudintsev, S.v., Stefanovsky, S.v., and jang,Y.N., Lapina, M.L, Sivtsov, AV., and Ewing, RC.(2002) Phase transformations during synthesis ofactinide matrices, Doklady of the Russian Academy ofSciences, 385A, v. 6, p. 671-675.
  8. Luo S., Zhu X., and Tang B. (1998) Actinides containmentby using zirconolite-rich Synroc. In: Proceedings ofInternational Meeting on Nuclear and HazardousWaste Management (Spectrum 98), ArnericanNuclear Society, La Grange Park, IL, p. 829-833.
  9. Ringwood AE. (1985) Disposal of high-level nuclearwaste: a geological perspective. Mineralogical Magazine,v. 49, Pt. 2, p. 159-176.
  10. Ringwood, A.E., Kesson, S.E., Reeve, KD., Woolfrey,J,L., and Ramm, E.J. (1988) Radioactive waste formsfor the future. Edited by W. Lutze and Ewing, RC.,Elsev., Arnst., 233p.
  11. Sobolev, LA, Stefanovsky, S.v. and Lifanov, EA (1995)Synthetic melted rock-type wasteforms. MRS Sympo,Proc. v. 353, p. 833-840.
  12. Teterin, Yu. A., Stefanovskii, sv. Yudintsev, S.v., BekUzarov,G.N., Tetrerin, A.Yu., Maslakov, KL, andUtkin, 1.0. (2004) X-ray photoelectron study of calciumcerium titanate ceramics. Russian [orunal ofInorganic Chemistry, v. 49, p. 87-94.
  13. Vance E.R., Begg B.D., Day RA, and Ball C.J, (1995) Zirconolite-rich ceramics for actinide wastes. In: ScientificBasis for Nuclear Waste Management-XVIII.MRS Symposia Proceedings, v. 353, Pt. 2, p. 767-774.
  14. Yamamura, H., Nishino, H., Kakinuma, K, and Nomura,K (2003) Electrical conductivity anomaly around fluorite-pyrochlore phase boundary. Solid State Ionics, v.158, p. 359-365.
  15. Wang, J" Nakamura, A., and Takeda, M. (2003) Structuralproperties of the fluorite- and pyrochlore-type compoundsin the Gdz03-ZrOz system xGd01.5_(1_xlZrOZwith 0.18~~0.62. Solid State Ionies, v. 164, p. 185191.
  16. Weber, w.j. and Ewing, RC. (2000) Plutonium immobilizationand radiation effects. Science, v. 289, p.2051-2052.