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ABSTRACT

In this work the Model Algorithmic Control (MAC) method is applied to control the grade
change operations in paper mills. The neural network model for the grade change oper-
ations is identified first and the impulse model is extracted from the neural network model.
Results of simulations for MAC control of grade change operations are compared with
plant operation data. The major contribution of the present work is the application of
MAC in the industrial plants based on the identification of neural network models. We
can confirm that the proposed MAC method exhibits faster responses and less oscillatory
behavior compared to the plant operation data in the grade change operations.
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1. Introduction

The task of most control

implemented in the paper mills is to keep the

systems

process variables at a steady-state during the
production of a single grade. However, during
grade change operations, conventional control
systems can hardly meet the performance
criteria. For this reason most of the grade
change operations are executed manually by
skilled operators. Improvement of process
performance during grade change operations is
a challenging problem. Fast grade changes and

highly skilled operators may be the only
solution to this problem. Because of the lack
of proper control tools to make the task of the
operators easier, the process performance
during grade change operations has not been
satisfactory.

The model predictive control methods have
found successful applications especially in the
area of petrochemical industry. There have
been many efforts to employ the model
predictive control method in the operation of
paper mills. But, because of the complexity and
high nonlinearity of the paper mills, an
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appropriate explicit plant model for the paper
mill to be used in model predictive control
schemes was hardly able to be identified. In this
case, a model based on artificial neural
networks can be an excellent candidate. Many
researchers tried to find out neural network
models for paper production processes. The
tensile strength of the paper web was identified
by using neural networks (1). Wang proposed
combination of the model predictive control
method with the neural networks to control the
cross directional profile of the basis weight (2).
Application of the general predictive control
method to control the bone dry weight and the
ash content of paper has been reported (3).

The key controlled variables in the grade
change operations are the basis weight, the ash
content and the moisture content of the paper
being produced. As the manipulated variables
it is common practice to choose the flow rate
of the thick stock, the filler flow, the machine
speed and the steam pressure. It is desired to
control all the three controlled variables
simultaneously, but most of the control
methods proposed so far have concentrated in
the control of only one or two key variables.
The PID control method presented by Tang and
Shi focused on the basis weight (4). A
transition control scheme based on the process
model was proposed by some researchers (5-6).
The method tries to manipulate the steam
pressure to make the moisture content follow
the predetermined trajectory.

In the present study the Model Algorithmic
Control (MAC) method is proposed to control
the grade
production plants. As the first step a neural

change operations 1in paper
network model for grade change operations is
identified. In the actual plant operation, it is
impossible to perform step or impulse tests. If

the neural model could serve as the "actual”
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plant, we may be able to get step or impulse
very easily. From the numerical
simulations the neural model identified showed

model

excellent agreement with the plant data, which
justifies the use of the neural model as the
"actual” plant. A multivariable MAC scheme is
proposed next to control all the key controlled
variables (basis weight, the ash content and the
moisture content) simultaneously followed by
numerical simulations.

2. Grade change operations

A modern paper machine can be considered
as a production line consisting of a stock
preparation system, wire section, wet pressing,
drying and coating units as shown in Fig. 1.
In stock preparation, different raw materials
such as chemical pulp from pulp mills,
mechanical pulp from chip refiners, chemicals
and additives are mixed together. Pulps are
usually refined in order to achieve the required
product quality. After it is cleaned and diluted,
pulp stock is fed into the white-water system
in the wire section of the paper machine.

The white-water system consists of the
headbox, wire and the circulated white-water
that is a filtrate from the wire. White—water is
used to dilute the stock to the desired
consistency (0.3~1 %) for the paper web
forming process. The headbox spreads the
stock flow on the wire across the width of the
machine and the paper web is formed. After
that, water is removed first by wet pressing
and then contact drying on steam-heated
cylinders. Often, modern paper machines have
on—machine coaters that apply pigment coating
color on the paper. Coating may be on both
sides and even double or triple layered. In
addition to these principal systems, there are
several support systems such as for broke
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handling, chemical preparation and so on.

A grade change is a product quality change
on a paper machine. In a big grade change,
several inputs to the paper machine are
changed, for example proportioning of raw
materials, refiner loads, stock flows, headbox
settings, machine speed, lineal pressures in wet
pressing, steam pressures and coating settings.
So far the most common way to execute a
grade change is by ramping. An open-loop
method such as ramping suits grade change
well because there are no exact target values
for the basis weight and moisture. It is
satisfactory if the target values hit inside an
acceptance range after the grade change. Most
grade changes are basis weight transitions.
The basis weights in a production schedule are
run in a cycle. The cycle is optimized so that
the basis weight changes are as small as
possible. The ideal condition is that the allowed
ranges of sequential grades overlap.

A typical grade change consists of a
calculation of target values and a dynamic
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co-ordination of paper machine speed, pulp
stock flow and steam. It is crucial to a
successful grade change that the new target
values are accurately known. Stock flow and
machine speed together control both the
production rate and basis weight. Drying is
controlled by steam pressure but often, only the
last steam groups are used for control purpose.
Because of long time constants and dead times
in the drving process, the target values for
steam pressures are the most important. Also
raw material properties, the condition of the
paper machine, basis weight, moisture and
speed, all affect the drying rate. The machine
tender usually gets the initial target values
from the records of the previous runs.

3. Neural Network Model

Artificial neural networks are well known
and widely used in modeling and control area.
In the present study a multilayer perceptron
network with backpropagation algorithm was
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Fig. 1. Schematics of paper machine.
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Fig. 2. Neural network structure for impulse
model.

constructed. Learning was performed so that
outputs track targets within permitted error
range given operational inputs.

The primary purpose of learning in this work
is to extract the impulse model to be used in
control. As can be seen in Fig. 2, impulse
change is introduced at the present time ¢ and
outputs obtained for next n time steps are used
as impulse model parameters. Levenberg-
Marquardt learning algorithm was employed
and bipolar sigmoid (Eq.[1]) was used as the
active transfer function.

2
net) = —————1 [1]
f ( ) 1 + e—lxnet
S(net) . activation function
net . activation value of neuron.

There are 4 and 3 neurons in the input and
output layers respectively. The hidden layer

=
contains 25 neurons. Plant operation data were

collected for more than 15 different grades of
papers. Part of the operation data was used as
training set and theremaining data set was
employed in the validation of the neural model.
Figs. 3 and 4 show the results of validations
of the neural network model for the paper
company A and B respectively. Among the
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three output variables, the basis weight (BW)
is by far the most important and major effort
is taken to control BW first in the plant
operation. As we can see in Figs. 3 and 4,
results of the numerical validation simulations
show excellent agreement with plant operation
data. This justifies the use of the neural
network model as the "actual” plant in the
model predictive control scheme.

—— Neural network model
— operation data
T T T

Fig. 3. Validation of the neural model
(Company A).

— Neural network model
. —— operation data
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Fig. 4. Validation of the neural model
(Company B).



Model Algorithmic Control for Paper Mills Using Neural Networks 15

4. Model Algorithmic Controi
(MAC) Method

Model predictive control (MPC) is a basic
concept or idea that can be implemented in
many ways, depending on models used and
assumptions made. The exact models for the
paper manufacturing processes can be found
elsewhere (6-7). The finite step and impulse
models limit applications to open-loop stable
processes and require many model coefficients
to describe the response. It is now recognized
that there are many advantages to using
discrete state space models. State space models
require fewer model parameters than step and
impulse response models to describe process
behavior. The step and impulse response
models are all linear. For some processes where
the process operating conditions are changed
frequently, a single linear model may not
describe the dynamic behavior of the process
over the wide range of conditions. For the paper
production processes, the range of operating
conditions is relatively small and no nonlinear
chemical reactions are involved. This fact
suggests the use of simple linear models (step
or impulse response model). For the paper
plants considered in the present study, it was
found that the impulse model with the order of
17 fits the plant data very well compared to
other types of models.

A multivariable impulse model can be
expressed by

@O=3 b ut-i) (k=l..m) [2]

j-1 =t

nu . input number
nY  : ouput number
b impulse parameter element.

The ARX formulation of the impulse model

is given by
AY (@)= BU(@-1)+BU({t-2)+L +BU(t—n)
4, =[100;010;001]
bl.],i bl.ZJ b1,3,i blA.i
B=1b,; by5,b,5, 0,4,
biyibyy sy by,

Ut =) = [tpoeg (¢ = 1) 0y (= 0) o, (F = D) o (F = 1) ]'

(3]
4, © unit matrix
B,  impulse parameter matrix
b,;« : impulse parameter element in B, matrix

Yspeed : speed, m/min
Uyt - thick stock, L/min, m*/min
Y filler flow, L/min

. 2
Ugeam . steam pressure, kg/cm”.

B

Matrices i contain 1impulse model

identified. A simple
least-squares curve fitting method available

parameters to be

from various computational tools such as
MATLAB can be used in the identification.
Figs. 5 and 6 show the results of validations
of the impulse model for the paper company A
and B respectively. As we can see in Figs. 5
and 6, the impulse model tracks the plant
confidently.

Predictions of outputs can be represented as
)Azk(t+l|t)=iibk,j,il/j(t+l—i)+;k(t+l|t) k=1..,ny)

(G=1,...,nu) (4]
A m mon A
WH\=) 2 Y-y Db V-l (=)
AR JREA
[5]

Vi . predictive output

" . noise.
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If the future noise is assumed to be kept as
the present noise, we have

mEHl =m0 =y O- 3 b U =) (k=1,m)
[6]
Ve

. measured output.

At first, we assumed that the measured

output Y ) is equal to the value computed

35 b, UL -

J=1i=1

. The
desired output trajectory can be defined as
o,(+)=a-0,t+I-)+(-a)-yt+]) [

from the model,

W desired output trajectory
a : parameter in desired output trajectory

V. setpoint.

The predicted outputs can be written as
Y=H,U,+H,U, +n=H,U,+f [8]

H,H,: dynamic matrix
Uy . future input
U, : past input.

The combination of a linear model and a
quadratic objective function lead to an
analytical solution for the control moves as

given by

Uy=(H, H,-Q+2-I)"-H, (@~ f) 9]

In practice, constraints on manipulated inputs
can be very important. If the analytical solution
results in an infeasible control action, then
obviously the control moves must be truncated
at the maximum or minimum values. Since the
resulting truncated solutions may not be
optimal if the control horizon is greater than 1,
it is important to use a constrained optimization
formulation for these problems. Fortunately,
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Fig. 5. Validation of the impulse model
(Company A).
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Fig. 6. Validation of the impulse model
(Company B).

MAC is easily formulated to explicitly handle
constraints by using quadratic programming.

5. Results and Discussion

In steady-state operation, an appropriate
control method can be used to stabilize process
operations and especially to stabilize the short
circulation. This will mean stable retentions.
However, the control task is very different
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during grade change operations. The primary
objective is to minimize the grade change time.
This leads also to short control horizon and
larger allowed control actions, because before
a grade change time MAC should already be
running the process towards a new grade. Yet,
as well, it is necessary to keep product quality
at accepted grade specifications as long as the
old grade run is continuing. Prevention of web
break is by far the most important target during
the grade change operation. At the end of the
grade change, the process should meet the
limits of the new grade as soon as possible and
not overshoot outside quality limits. But, in

actual operations, overshoot less than * 5% of
the grade change span is usually allowed. The
optimization horizon and the number of actions
in the calculated sequence must be extended
towards the end of the grade change.

In most grade change operations, changes of
concurrent machine speed are also included.
Moisture content is usually a challenging
variable for automatic grade changes. Water
content after the press section would be
dependent upon many variables including
machine speed, paper basis weight and ash
content. The paper web inside drying section
during grade change will special
conditions. There will be different basis weight
in each drying section. Also a piece of paper

have

web will have different speed in each drying
section compared to pieces in other drying
sections. If we increase the web speed, we will
decrease drying time in the drying section at
the same time. This fact implies that we must
increase drying power correspondingly. The
drying process itself is also dependent upon
heat production at the heated drying cylinders
and water evaporation conditions in the hood.

In the beginning of each grade change it is

important to have a good predictive model to
adjust manipulated variables, almost according
to traditional open-loop grade change program.
At the end of grade change, we must smoothly
move towards steady-state MAC operation by
extending the prediction horizon and decreasing
the amount of control movement allowed
during each cycle.  The
performance of the proposed control scheme

optimization

was evaluated by using numerical simulations.
Grade change operation data were collected for
the plant A and plant B. For the plant A, the
prediction horizon was set to 16 and the input
suppression parameter was set to 17. After
some trials, the suitable weights for the outputs
(Qo) and the inputs (R) were found to be [3
1 1] and [0.1 0.1 0.2 0.1] respectively. The
parameter in the desired output trajectory (a)
was set to 0.85. For the plant B, the same values
as for the plant A were used for the prediction
horizon and the input suppression parameter.
The suitable weights for the outputs (Qo) and
the inputs (R) were found to be [3 3 1] and [0.1
0.1 0.2 0.1] respectively. The parameter in the
desired output trajectory (o) was set to 0.9. The
sampling time was 30 sec (0.5 min).

Figs. 7 and 8 show results of numerical
simulations for the grade change of 110-84
(g/m?) in the plant A. It is normal practice to
express a grade change operation in terms of
the basis weight (BW) because BW is the most
important output variable. Fig. 7 shows the
optimal obtained from MAC
compared to the plant operation data. We

input trend

cannot say which one is "better”, but the
primary concern is to avoid unnecessary
oscillations or perturbations in the inputs. Fig.
8 shows the output trend. In Fig. 8, the MAC
line was obtained by applying the optimal
inputs from MAC to the "plant”. As described
before, the "plant” is the neural network model
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for the plant and the accuracy of the neural
model was depicted in Figs. 3 and 4. It is
obvious that the grade change time was
reduced up to 50% (approximately from 15 min.
to 7 min.) and that oscillations were suppressed
enough. This fact makes the application of
MAC scheme in the plant operation promising.
Figs. 9 and 10 show similar results for the
grade change of 96 —110 (g/m? in the plant
A. Again the grade change time was reduced
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more than 50 %6 and the trends obtained by
MAC
overshoots.

show smooth behavior without

Figs. 11 and 12 show results of numerical
simulations for the grade change of 57.5—73
(g/mZ) in the plant B.As in the case of plant
A, we can see that decrease in the grade change
time and smooth trends are successfully
achieved by MAC. Figs. 13 and 14 show similar

results for the grade change of 47.5-57 (g/m?%
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in the plant B. Again the grade change time
was greatly reduced and the trends obtained by
MAC smooth  behavior without
perturbations.

show

6. Conclusions

The most challenging issue for the automatic
grade change operation is the reduction of
grade change time without web bregk. This
leads to short control horizon and larger
allowed control actions, because before a grade
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change time the model predictive control
method being used should already be running
the process towards a new grade. The Model
Algorithmic Control scheme based on the
impulse plant model was found to achieve the
expected primary control objectives: reduction
in the grade change time and suppression of
input/output trends. The neural network model
for the grade change operations were developed
first. From the numerical simulations the neural
network model was found to track the plants
exactly. Thus the neural model acted as the real
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plant in the control simulations. The MAC
proposed in the present study showed desired
performance: the grade change time was
decreased more than 50 % and the input/output
trends showed smooth behavior without severe
oscillations.
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