Surfactant Protein A mRNA을 이용한 유전자 재결합 반응에서 비특이성 RNA의 첨가에 의한 특이성 검정

Assessment of the Specificity of A Hybridization of Surfactant Protein A by Addition of Non-specific Rat Spleen RNA

  • 김병철 (한양대학교 의과대학 내과학교실) ;
  • 김미옥 (제주대학교 의과대학 내과학교실) ;
  • 김태형 (한양대학교 의과대학 내과학교실) ;
  • 손장원 (한양대학교 의과대학 내과학교실) ;
  • 윤호주 (한양대학교 의과대학 내과학교실) ;
  • 신동호 (한양대학교 의과대학 내과학교실) ;
  • 박성수 (한양대학교 의과대학 내과학교실)
  • Kim, Byeong Cheol (Department of Internal Medicine, Hanyang Universities, College of Medicine) ;
  • Kim, Mi Ok (Department of Internal Medicine, Cheju Universities, College of Medicine) ;
  • Kim, Tae-Hyung (Department of Internal Medicine, Hanyang Universities, College of Medicine) ;
  • Sohn, Jang Won (Department of Internal Medicine, Hanyang Universities, College of Medicine) ;
  • Yoon, Ho Joo (Department of Internal Medicine, Hanyang Universities, College of Medicine) ;
  • Shin, Dong Ho (Department of Internal Medicine, Hanyang Universities, College of Medicine) ;
  • Park, Sung Soo (Department of Internal Medicine, Hanyang Universities, College of Medicine)
  • 발행 : 2004.04.30

초록

연구배경 : 유전자 재결합 반응에 있어서 다른 종류의 RNA의 첨가에도 불구하고 유전자 반응에 영향이 없어야 여타 실험의 정량적 분석에 이용이 가능하다. 이에 저자들은 쥐를 대상으로 filter hybridization방법과 SP-A mRNA을 이용하여 비특이성 RNA 즉, 쥐의 비장 RNA의 첨가가 surfactant protein A (SP-A)의 유전자 재결합반응의 linearity, 상관계수 및 특이성에 미치는 영향을 알아보기 위하여 이 연구를 시행하였다. 방 법 : SP-A transcript mRNA의 정량, 즉 0, 0.1, 0.5, 1 및 2.5 ng에 비특성 RNA 즉 비장 RNA를 각각 0,1, 5 및 $10{\mu}g$을 첨가하여 filter hybridization 방법을 이용하여 SP-A mRNA양과 cpm과의 연관성을 비교정량측정하여 각각의 linearity, 상관계수 및 특이성의 분자생물학적 정도관리에 대한 비교 관찰을 하기 위하여 이 연구를 시행하였다. 결 과 : 1. 쥐의 spleen RNA 0, 1, 5, 10 및 $20{\mu}g$에 대한 cpm과의 표준곡선 및 상관계수는 Y=0.13X-19.35(X=cpm, Y=spleen RNA input)이고, 상관계수는 0.98이었다. 2. SP-A sense 전사체 0, 0.1, 0.5, 1.0, 2.5 및 5 ng에 대한 cpm과의 표준곡선 및 상관계수는 Y=0.00066X-0.046 (X=cpm, Y=SP-A mRNA 전사체)이고, 상관계수는 0.99이었다. 3. 쥐의 비장 RNA $1{\mu}g$을 첨가 후 SP-A sense 전사체 0, 0.1, 0.5, 1.0, 2.5 및 5 ng에 대한 cpm과의 표준곡선 및 상관계수는 Y=0.00056X-0.051(X=cpm, Y=SP-A mRNA 전사체)이고, 상관계수는 0.99이였다. 쥐의 비장 RNA $5{\mu}g$을 첨가 후 표준곡선은 Y=0.00065X-0.088 (X=cpm, Y=SP-AmRNA 전사체)이고, 상관계수는 0.99이였다. 쥐의비장 RNA $10{\mu}g$을 첨가 후 표준곡선은 Y=0.00051X-0.10 (X=cpm, Y=SP-A mRNA 전사체)이고, 상관계수는 0.99이었다. 결 론 : 이상의 결과는 비특이성 RNA인 비장 RNA의 첨가 후 SP-A sense mRNA양과 cpm과의 상관관계는 sense 유전자와 anti-sense 유전자의 유전자 재결합 반응에 있어서 다양한 양의 비특이성 RNA의 첨가나 오염에도 불구하고 linearity, 상관계수 및 그 특이성이 잘 유지됨을 입증해 준 결과라 생각된다.

Background : Nucleic acid hybridization has become an essential technique in the development of our understanding of gene structure and function. The quantitative analysis of hybridization has been used in the measurement of genome complexity and gene copy number. The filter hybridization assay is rapid, sensitive and can be used to measure RNAs complementary to any cloned DNA sequence. Methods : The authors assessed the accuracy, linearity, correlation coefficient and specificity of the hybridization depending on the added dose(0, 1, 5, and $10{\mu}g$) of non-specific rat spleen RNA to hybridization of surfactant protein A mRNA. Filter hybridization assays were used to obtain the equation of standard curve and thereby to quantitate the mRNA quantitation. Results : 1. Standard curve equation of filter hybridization assay between counts per minute (X) and spleen RNA input (Y) was Y=0.13X-19.35. Correlation coefficient was 0.98. 2. Standard curve equation of filter hybridization assay between counts per minute (X) and surfactant protein A mRNA transcript input (Y) was Y=0.00066X-0.046. Correlation coefficient was 0.99. 3. Standard curve equation of filter hybridization assay between counts per minute (X) and surfactant protein A mRNA transcript input (Y) after the addition of $1{\mu}g$ spleen RNA was Y=0.00056X-0.051. Correlation coefficient was 0.99. 4. Standard curve equation of filter hybridization assay between counts per minute (X) and surfactant protein A mRNA transcript input (Y) after the addition of $5{\mu}g$ spleen RNA was Y=0.00065X-0.088. Correlation coefficient was 0.99. 5. Standard curve equation of filter hybridization assay between counts per minute (X) and surfactant protein A mRNA transcript input (Y) after the addition of $10{\mu}g$ spleen RNA was Y=0.00051X-0.10. Correlation coefficient was 0.99. Conclusions : Comparison of cpm/filter in a linear range allowed accurate and reproducible estimation of surfactant protein A mRNA copy number irrespective of the addition dosage of non-specific rat spleen RNA over the range $0-10{\mu}g$.

키워드

참고문헌

  1. Denhardt DT: A membrane-filter technique for the detection of complementary DNA. Biochem Biophys Res Commun 1966;23:641-6
  2. Warnaar SO, Cohen JA: A quantitative assay for DNA-DNA hybrids using membrane filters. Biochem Biophys Res Commun 1966;24:554-63
  3. Anderson MLM, Young BD: Chapter4, Quan titative filter hybridisation. In: Hames BD and Higgins SJ, Nucleic acid hybridisation, Oxford. IRL Press.; 1985 p.73-111
  4. Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 1987;162 :156-9
  5. Bailey JM, Davidson N: Methylmercury as a reversible denaturing agent for agarose gel electrophoresis. Anal Biochem 1976;70:75-85
  6. McMaster GK, Carmichael GG : Analysis of single-and double-stranded nucleic acids on polyacylamide and agarose gels by using glyoxal and acridine orange. Pro Natl Acad Sci 1977;74:4835-8
  7. Southern EM: Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 1975;98:503-17
  8. Nagamine Y, Sentenac A, Fromageot P: Selective blotting of restriction DNA fragments on nitrocellulose membranes at low salt concentrations. Nucleic Acids Res 1980; 8:2453-60
  9. Meinkoth J & Wahl G: Hybridization of nucleic acids immobilized on solid supports. Analytical Biochemistry 1984;138:267-84
  10. Flavell RA, Birfelder EJ, Sanders JPM, Borst P: DNA-DNA hybridization on nitrocellulose filters. Eur J Biochem 1974;47:535-43
  11. Hutton JR, Wetmur JG: Renaturation of bacteriophage ∅X174 DNA-RNA hybrid:RNA length effect and nucleation rate constant. J Mol Biol 1973;77:495-500
  12. Nygaard AP, Hall BD: Formation and properties of RNA-DNA complexes. J MolBiol 1964;9:125-42
  13. Wetmur JG, Davidson N: Kinetics of renaturation of DNA. J Mol Biol 1968;31:349-70
  14. Wahl GM, Stern M, Stark GR: Efficient transfer of large DNA fragments fromagarose gels to diazobenzyloxymethyl-paper and rapid hybridization by using dextran sulfate. Pro Natl Acad Sci 1979;76:3683-7.
  15. Kohne DE, Levison SA, Byers MJ: Room temperature method for increasing the rate of DNA reassociation by many thousandfold: the phenol emulsion reassociation technique. Biochemistry 1977;16:5329-41
  16. McConaughy BL, Laird CD, McCarthy BJ: Nucleic acid reassociation in formamide. Biochemistry 1969;8:3289-95
  17. Howley PM, Israel MA, Law M-F, Martin MA: A rapid method for detecting and map ping homology between heterologous DNAs;evaluation of polyomavirus genomes. J Biol Chem 1979;254:4876-83
  18. Britten RJ, Graham DE, Neufeld BR: Analysis of repeating DNA sequences reassociation, in Grossman L and Moldave K, Methods in Enzymology, Academic Press, NY, 1974, p363-431
  19. Lasky LA, Lev Z, Xin J-H, Britten RJ, Davidson EH: Messenger RNA prevalence in sea urchin embryos measured with cloned cDNAs. Proc Natl Acad Sci 1980;77:5317-21
  20. Xin J-H, Brandhorst BP, Britten RJ, Davidson EH:Cloned embryo mRNAs notdetectably expressed in adult sea urchin coelomocytes. Dev Biol 1982;89:527-31