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Abstract. The network representation and branch and bound algorithm with efficient lower and upper bounding 
procedures are developed to determine a global optimal production schedule on a machine that minimizes 
sequence-dependent setup cost and earliness/tardiness penalties. Lower bounds are obtained based on heuristic 
and Lagrangian relaxation. Priority dispatching rule with local improvement procedure is used to derive an initial 
upper bound. Two dominance criteria are incorporated in a branch and bound procedure to reduce the search 
space and enhance computational efficiency. The computational results indicate that the proposed procedure 
could optimally solve the problem with up to 40 jobs in a reasonable time using a personal computer. 
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1.  INTRODUCTION 

Scheduling has been applied in a wide range of 
manufacturing activities. An efficient production 
schedule can result in substantial cost reduction and 
increased customer satisfaction.  In this paper, a multi-
item single-machine scheduling problem to minimize 
total cost is presented. The total cost is the sum of 
earliness/tardiness penalties of jobs and sequence-
dependent setup cost. A single machine scheduling 
method is useful not only for scheduling jobs on a 
single machine but also for generating a master 
production schedule of flow shop and job shop where 
there is a single bottleneck work center. 

The earliness/tardiness problem arises in the Just-
In-Time (JIT) scheduling environment in which jobs are 
forced to be completed as close to their due dates as 
possible.  Jobs that are completed early must be held in 
finished goods inventory and an earliness penalty 
(inventory holding cost) may be incurred, while jobs 
that are completed after their due dates may cause a 
tardiness penalty due to customer dissatisfaction, and 
compensation or contract penalty. These penalties could 

be different among jobs based on the values, priority of 
jobs, and customers.  

In multi-item single-machine production systems, 
setup cost is incurred when production is switched from 
one job to another. The setup that depends only on the 
job to be processed is called sequence-independent 
setup and the setup that depends on the job to be 
processed and its immediately preceding job is called 
sequence-dependent setup. The setup costs, which occur 
due to the changing of mold, retooling, rearrangement 
of workstations, or the extent of cleaning required 
between process runs, are usually dependent of the 
degree of similarity between consecutive jobs, for 
example, sizes, shapes, and colors.  

A number of studies involve single-machine 
scheduling problems. Table 1 presents a list of different 
objective functions that appeared in the literature. 

1.1  Related Works on the Setup 
(Changeover) Cost 

Glassey (1968) proposed an algorithm to determine 
the job sequence that minimizes the total number of  
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Table 1. List of related papers in literature. 

Objective Functi Condition(s) Setup time
(STji) 

Setup Cost
(SCji) 

Earliness
Cost(hi)

Tardiness
Cost(wi)

Authors 

Min no. of chageovers 
tardiness is 

0 1 0 M Glassey (1968) 
not allowed 

Min seq-dep changeover tardiness is 
0 Seq-dep 0 M Driscoll and Emmoms (1977)

Cost not allowed 

  SCji = 1 if j<i 

0 

 

0 M Hu et al. (1987) 
Min seq-dep changeover  SCji = 0 if j>=i SCji = 1 if j<i

Cost tardiness is SCji = 0 if j>=i

  not allowed  

Min weighted tardiness  0 0 0 R Potts and Wassenhove (1984) 

  

0 0 R R 

Abdul-Razaq and Potts (1988),
Min weighted earliness-    Ow and Morton (1989),  
tardiness penalties  Li (1997), Liaw (1999),  
    Ibaraki  and Nakamura (1994) 
Min total earliness-tardiness   hi = api, 

0 0 api bpi Yano and Kim (1991) 
penalties wi = bpi 

Min weighted earliness-tardiness  
 Seq-dep 0 

R R 
Coleman (1992) 

penalties with seq-dep setup time   

Min weighted earliness-tardiness  commom 
0 0 R R 

Mondal and Sen (2001),  

penalties with common due date due date Azizoglu and Webster (1997) 

Min total earliness-tardiness   commom 

Seq-dep 0 

hi = hj wi = wj

Rabadi et al. (2004) penalties with common due date due date for all i,j for all i,j

and seq-dep setup time    
Min total earliness-tardiness   idle time 

0 0 
hi = hj wi = wj

Chang (1999) , Ventura (2003)
penalties with inserted idle time is allowed for all i,j for all i,j
Min total earliness-square 
tardiness penalties with idle time 

0 0 
hi = hj wi = wj

Shaller (2004) 
Inserted idle time is allowed for all i,j for all i,j

Min weighted earliness-tardiness  idle time 
0 0 R R Chen and Lin (2002) 

penalties with  inserted idle time is allowed 

Min weighted earliness-tardiness  idle time 

Seq-dep Seq-dep R R Sourd (in press) penalties with seq-dep setup cost is allowed 

and time    
 R = Real data 
 M = Big positive number 
 pi = Processing time of job i 
 a, b = positive real numbers  t2 
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changeovers of the machine when tardiness is not 
allowed. The problem was modeled as a shortest path 
problem. Driscoll and Emmons (1977) developed a 
similar work with the objective of minimizing 
sequence-dependent changeover penalty. They reported 
the use of forward-time and backward-time dynamic 
programming with the application of monotonicity 
property to find an optimal solution. A more specific 
problem of setup cost was considered by Hu et al. 
(1987). In this paper, the setup cost when switching 
from producing item j to item i is one dollar if j is less 
than i, and zero if j is greater than or equal to i. The  
setup  time  of   these  studies  is  assumed  to  be negligible. 
The review of scheduling literature considering setup can 
be found in Allahverdi et al. (1999). 

1.2  Related Works on the Earliness and 
Tardiness 

The scheduling problems with earliness and 
tardiness penalties have received much interest due to 
the growing adoption of the JIT manufacturing 
philosophy.  A special case known as a common due 
date problem was studied by a number of researchers.  
Mondal and Sen (2001) investigated a graph search 
space algorithm with depth-first branch and bound 
scheme to the weighted earliness and tardiness problem 
with a restricted (small) due date. Azizoglu and Webster 
(1997) introduced a branch and bound algorithm and a 
beam search procedure to solve the problem with the 
sequence-dependent family setup time where the due 
date is common and unrestricted (large). A recent paper 
by Rabadi et al.  (2004) considered the same problem 
with sequence-dependent setup time but earliness and 
tardiness are weighted equally. The branch and bound 
algorithm was developed to solve the problem with up 
to 25 jobs. 

The scheduling problem with non-identical due 
dates was investigated by many researchers.  Potts and 
Wassenhove (1985) presented a branch and bound 
algorithm with Lagrangian relaxation and multiplier 
adjustment procedure for the total weighted tardiness 
problem. For a weighted earliness and tardiness case, 
Abdul-Razaq and Potts (1988) proposed a branch and 
bound technique with the use of a relaxed dynamic 
programming procedure by mapping state-space onto a 
smaller state-space and performing recursion to obtain a 
good lower bound. The lower bound is further 
improved through the use of state-space modifier. The 
problem can handle up to 20 jobs with reasonable 
computational time. Ow and Morton (1989) presented a 
series of heuristics, dispatch priority rules and a filtered 
beam search technique, to provide near optimal solution 
with relatively small search tree when the number of 
jobs is less than 30. Ibaraki and Nakamura (1994) used 
a Successive Sublimation Dynamic Programming 

method for the same problem by performing several 
types of dynamic programming recursions on a number 
of generated states. The method succeeds in effectively 
solving problems with up to 35 jobs. Li (1997) 
developed a branch and bound algorithm based on 
decomposition of the problem into two sub-problems. 
The lower bound of each sub-problem is obtained 
using Lagrangian relaxation with multiplier 
adjustment procedure. The algorithm can be used to 
solve the problems with up to 50 jobs. Liaw (1999) 
proposed a similar technique in which the lower 
bounds are computed using Lagrangian relaxation 
with multiplier adjustment and single pass procedure. 
The upper bound is obtained using two-phase heuristic 
procedures. Simple dominance rules are also derived 
to help eliminating nodes in the branch and bound 
search tree. The computational experiments show that 
the algorithm performs very well on problems with up 
to 50 jobs. Coleman (1992) proposed a simple mixed 
integer-programming model for a weighted earliness 
and tardiness problem with sequence-dependent 
setup time.  The model can handle the problem up to 
8 jobs. Yano and Kim (1991) discussed a problem 
where the earliness and tardiness weights are 
proportional to the processing times of the jobs. 
Dominance criteria are derived which eliminate 
many possible sequences from consideration in the 
branch and bound procedure.  

Many authors considered the problem where the 
idle time can be inserted into the schedule. Chang (1999) 
applied branch and bound algorithm with the lower 
bound based on overlap elimination procedure for the 
un-weighted earliness and tardiness problem.  Ventura 
and Radhakrishnan (2003) formulated the same 
problem as 0-1 linear program. They implement 
Lagrangian relaxation procedure that utilizes the sub-
gradient algorithm to obtain near optimal solutions. 
Shaller (2004) presented a timetabling algorithm that 
inserts idle time into a schedule in order to minimize the 
sum of job earliness and the square of job tardiness and 
establish a lower bound for a branch and bound method. 
The weighted earliness and tardiness case was 
considered by Chen and Lin (2002). They utilized a 
dominance rule to develop a relationship matrix and 
combined this matrix with a branching strategy to solve 
the problem. The most recent paper by Sourd (in press) 
also used branch and bound procedure for the same 
problem but with sequence-dependent setup time and 
cost between group of products. The time-indexed 
formulation with different relaxations was proposed to 
obtain the lower bound for the problem. The 
computational result has shown that the algorithm is 
limited to problems with no more than 20 jobs. Those 
interested in early/tardy problems are referred to Baker 
and Scudder (1990) for comprehensive survey of the 
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previous literature. 
Since the problem of Sourd (in press) is general 

and complex, the representation of the schedule and the 
algorithm are complicated. This results in a long 
computational time. Hence, it is only applicable to 
small-sized problems (up to 20 jobs).  This paper aims 
to develop a simpler algorithm and schedule 
representation, which also guarantees the global optimal 
solution for larger problems. However, some assumptions 
are required. The problem under consideration in this 
paper is based on assumptions that the idle time cannot 
be inserted into the schedule and setup time is 
sequence-independent. In this case, the setup time can 
be added directly to the processing time. The insertion 
of idle time in the schedule can reduce the earliness of 
the jobs. However, this may not be appropriate for some 
situations, where the idle cost is higher than the 
earliness penalties, the capacity of machine is less than 
the demand, or the machine under consideration is a 
bottleneck resource, etc.  

However, the problem under consideration in this 
paper is a general case of many problems presented in 
the literature (Abdul-Razaq and Potts (1988), Azizoglu 
and Webster (1997), Driscoll and Emmons (1977),  
Glassey (1968), Hu et al. (1987), Ibaraki and Nakamura 
(1994), Li (1997), Liaw (1999),  Mondal and Sen 
(2001), Ow and Morton (1989), Potts and Wassenhove 
(1985), Yano and Kim (1991) ). It can be easily adapted 
to deal with these problems by modifying some input 
parameters.   

This paper is organized as follows: the next section 
describes the scheduling problem under consideration; 
sections 3 and 4 describe the derivation of lower bounds 
and upper bound, respectively; section 5 explains the 
dominance criteria; the branch and bound algorithm and 
an illustrative example are described in sections 6 and 7; 
computational performance is analyzed and discussed 
in section 8; finally, conclusions and recommendations 
for further studies are presented in section 9. 

2.   PROBLEM DESCRIPTIONS 

X is a set of N independent jobs {x1, x2,…, xN} 
which are to be scheduled non-preemptively on a 
machine that can handle at most one job at a time.  
Once the current job is finished, the next job is started 
immediately without an idle time. The sequence-
dependent setup cost is described by a matrix SC = 
[SCji], where SCji  is the cost of switching from job j to i. 
The setup cost of the first job, i.e. SC0i, is assumed to be 
zero.  The setup time is sequence-independent and is 
added to the processing time. Each job is available at 
time zero and its distinct due date di is known. The 
processing requirement pi is expressed in days of 
production, which can be obtained from a demand of 

job I, Qi, divided by its production rate Rpi. The 
earliness and tardiness penalties per period are 
represented by hi and wi, respectively.  If the completion 
time Ci is before the due date, the earliness of job i is 
determined from Ei = max (0, di – Ci).  If the job is 
completed after the due date, the tardiness of job i is 
then determined from Ti = max (0, Ci – di).   

The above-mentioned problem can be found in 
many types of industries that adopt the Just-In-Time 
(JIT) production philosophy. Under JIT philosophy, 
jobs should be finished right at the due date since both 
early and tardy completions have penalties.  The tardy 
penalty cost is normally higher than the early penalty 
cost.  Both penalty costs may be dependent of the jobs.  
The JIT philosophy will also cause frequent setups.  As 
a result, the total setup costs are high and should be 
considered explicitly in the objective function. For 
many production environments, the setup cost of a 
machine depends on the production sequence. The 
magnitude of setup cost often depends on the similarity 
of the process technology requirements of two 
consecutive jobs. The sequence-dependent setup 
problems can be found in the production of different 
colors of paint, strengths of detergent, and blends of 
fuel (see Morton and Pentico, 1993).   

3.   LOWER BOUND DERIVATION  

In this section, procedures for deriving lower 
bounds are presented. The problem is decomposed 
into three sub-problems: weighted early, weighted 
tardy, and sequence-dependent setup. Based on the 
sequence of jobs, yji = 1 if job j precedes job i; 
otherwise yji = 0. 

The early/tardy problem with sequence-dependent 
setup cost can be written as (P): 

(P)            ( )∑
=

++=
N

i
jijiiiii SCyTwEhV

1
Min        (1) 

subject to 

)5(

)4(0

)3(

)2(0

iii

i

iii

i

dCT

T

CdE

E

−≥

≥

−≥

≥

 

The problem P can be decomposed into three sub-
problems P1, P2, and P3 as follows: 

Sub-problem P1, weighted earliness sub-problem 

(P1)               ∑
=

=
N

i
ii EhV

1
1 Min                              (6)                          
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subject to 
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Sub-problem P2, weighted tardiness sub-problem 

(P2)                  ∑
=

=
N

i
iTwV

1
2 Min                            (9) 

subject to 

)11(

)10(0

iii

i

dCT

T

−≥

≥
 

Sub-problem P3, sequence-dependent setup sub-
problem 

(P3)                       ∑
=

=
N

i
jiji SCyV

1
3 Min                  (12) 

The lower bounds of P1, P2, and P3 can be used to 
obtain the lower bound for P. The lower bounds of 
weighted early and weighted tardy sub-problems are 
computed based on Lagrangian relaxation, and a 
multiplier adjustment method is used to compute the 
value of Lagrange multipliers. The lower bound of 
sequence-dependent setup sub-problem is obtained 
using a minimum setup heuristic. The lower bounding 
procedures developed by Li (1997) are used to obtain 
the lower bounds for P1 and P2. The heuristic used to 
obtain the lower bound for P3 is developed in this paper. 
The lower bound for the problem is the sum of the three 
lower bounds. The proof of this statement is adapted 
from Li (1997) with the addition of sequence-dependent 
setup sub-problem P3. 

 
Theorem 1. If V1, V2, V3, and V are the minimum 
objective functions of P1, P2, P3, and P, respectively, 
then V1 + V2 + V3 ≤ V. 

 
Proof. Let α be an optimal schedule and V = C1 + C2 + 
C3, where ∑

=
=

N

i
ii EhC

1
1 , the total early cost of 

sequence α. ∑
=

=
N

i
iTwC

1
2 , the total tardy cost of 

sequence α, ∑
=

=
N

i
jiji SCyC

1
3 , the total setup cost 

of sequence α. Therefore, V1 ≤ C1, V2 ≤ C2 , and V3 ≤ 
C3  . Since V = C1 + C2 + C3 , then V1 + V2 + V3 ≤ V.  

 
Lemma 1. If LB1, LB2, LB3 are lower bounds for P1, 
P2, and P3, respectively, then LB1 + LB2 + LB3 is a 
lower bound for P. 

 
Proof. Since LB1, LB2, LB3 are lower bounds for P1, 
P2, and P3, respectively, then LB1 ≤ V1, LB2 ≤ V2, LB3 
≤ V3. Therefore, LB1 + LB2 + LB3 ≤ V1 + V2 + V3.  
From Theorem 1, V1 + V2 + V3 ≤ V, then LB1 + LB2 + 

LB3 ≤ V, a lower bound for P.  

3.1.  Lower Bound for Sub-Problem P1 

A Lagrangian relaxation of constraint 8 yields the 
Lagrangian problem LR1: 

(LR1)          ( ) ( ) ( )[ ]∑
=

−+−=
N

i
iiiiii CdEhL

1
1 Min λλλ     (13) 

subject to 

                              0≥iE                                (14) 

where, ( )Nλλλλ ........,,, 21=  is the vector of 
corresponding multipliers. In LR1, the objective 
function can be expanded as follows: 

    ( ) ( )∑ ∑∑
= ==

−+−=
N

i

N

i
ii

N

i
iiiii CdEhL

1 11
1 MaxMin λλλλ     (15) 

According to Li (1997), for any choice of 
nonnegative multipliers, L1(λ) provides a lower bound 
for problem P1. The first term can be minimized by 
setting all Ei = 0 if  hi – λi ≥ 0. The second term is a 
constant. The third term can be maximized using the 
weighted longest processing time rule (WLPT), that is, 
sequencing jobs in non-decreasing order of λi/pi.  
Assume that the jobs generated by the heuristic 
presented in section 3.1.1 are renumbered so that the 
sequence is (1, 2,…, N). Also, let Ci* be the completion 
time of jobs when they are sequenced by the heuristic. 
Then, a lower bound L1(λ) can be determined from the 
Lagrangian dual sub-problem D1. 

(D1)               ( )∑
=

−=
N

i
iii CdL

1

*
1 Min λ               (16)  

subject to   

    1,.......,1
1

1 −=≤
+

+ Ni
pp i

i

i

i λλ
          (17) 

    1,.......,10 −=≤≤ Nihiiλ        (18) 

The multiplier adjustment method developed by 
Potts and Wassenhove (1985) requires the following 
heuristic to sequence the jobs. Then, Li (1997) used this 
method to solve the problem. The multipliers obtained 
from the heuristic can solve the Lagrangian problem so 
that the resulting lower bound is as large as possible. 

Heuristic for solving Lagrangian dual sub-problem 
D1 
Step1.  Sequence jobs by WLPT rule. Set Ei = di – Ci

*,         

i = 1,…, N and NiEpV k

N

ik
ki ,...,1, == ∑

=
 

Step 2.  Set VN+1 = 0, S1 = {N + 1}, and k = N 
Step 3.  For k = N to 1, when k < 1 go to step 4 
             Let m be the smallest integer in set S1 
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             If  Vk > Vm , then include k in set S1,  
             i.e., S1 = S1 ∪ {k} 

 Set k = k – 1 
Step 4.  Set k = 1, and S1 = S1 - { N + 1}  
Step 5.  For k = 1 to N, when k > N terminate 

 If k = 1 and k ∉ S1, then λk = 0 
 If k > 1 and k ∉ S1, then λk = λk-1 (pk/pk-1) 
 If k ∈ S1, then λk = hk 
 k = k + 1 

 
The Lagrangian multiplier (λi) and Ci* can be 

obtained from the above heuristic. Then L1 can be 
calculated and used as a lower bound LB1 for sub-
problem P1. 

 3.2.  Lower Bound for Sub-Problem P2 

A Lagrangian relaxation of constraint 11 yields the 
Lagrangian problem LR2: 

(LR2)       ( ) ( ) ( )[ ]∑
=

−+−=
N

i
iiiiii dCTwL

1
2 Min λλλ    (19) 

subject to 

0≥iT                               (20) 

where, ( )Nλλλλ ........,,, 21=  is the vector of 
corresponding multipliers. Similar to LR1, LR2 can be 
solved using the weighted shortest processing time rule 
(WSPT) by setting Ti = 0 if  wi – λi ≥ 0. Then, the lower 
bound L2(λ) can be obtained from D2. 

(D2)                  ( )∑
=

−=
N

i
iii dCL

1

*
2 Min λ               (21) 

subject to 

         1,.......,1
1

1 −=≥
+

+ Ni
pp i

i

i

i λλ
(22) 

   1,.......,10 −=≥≥ Niw ii λ  (23) 

 
Similarly, the multiplier adjustment method is used 

to solve the problem. 
Heuristic for solving Lagrangian dual sub-problem 

D2. 
Step 1. Sequence jobs by the WSPT rule. Set Ti = Ci

*- di,     

i = 1,…, N and NiTpV k

i

k
ki ,...,1,

1
== ∑

=
 

Step 2.  Set V0 = 0, S2 = {0}, and k = 1 
Step 3.  For k = 1 to N, when k > N go to step 4 
             Let m be the largest integer in set S2 
             If  Vk > Vm , then include k in set S2,  
             i.e., S2 = S2 ∪ {k} 
             Set k = k + 1 
Step 4.  Set k = N, and S2 = S2 - {0}  

Step 5.  For k = N to 1, when k < 1 terminate 
             If k = N and k ∉ S2, then λk = 0 
             If k < N and k ∉ S2, then λk = λk+1 (pk/pk+1) 
             If k ∈ S2, then λk = wk 
             k = k - 1 

 
The Lagrangian multiplier (λi) and Ci* can be 

obtained from the above heuristic. Then L2 can be 
calculated and used as a lower bound LB2 for sub-
problem P2. 

3.3.  Lower Bound for Sub-Problem P3 

A Lower bound of sub-problem P3 can be obtained 
using minimum setup heuristic developed in this paper. 
Minimum setup heuristic 

Let   Sl   be an ordered set of scheduled jobs of 
each node at level l excluding the last job in the 
schedule; at level 0, So = ∅.  S′l is a set of unscheduled 
jobs of that node at level l. N - l is a number of elements 
in set S′l, where N is the total number of jobs. 

 
Step 1.  For each node, determine set Sl  and S′l . 
Step 2.  For i = 1 to N – l, Calculate the minimum sequence- 

dependent setup cost (
ixMSC ) of each element 

xi. 

                         )(Min

'

ij

li

lj

ij
i xx

Sx
Sx
xxx SCMSC

∈
∉
≠

=                      (24) 

where, 
ij xxSC  is the sequence-dependent setup 

cost from job xj to xi. 
Step 3. Calculate the minimum sequence-dependent 
setup cost of the node (MSCl) 

                     ∑
−

=

=
lN

i
xl i

MSCMSC
1

                  (25) 

Then, the MSCl is used as a lower bound LB3 for 
sub-problem P3. 

4.  UPPER BOUND DERIVATION  

In this section, two-phase heuristic procedures are 
used to determine an initial feasible solution for the 
problem. The priority dispatching rule developed by 
Ow and Morton (1989) is used in the first phase to 
establish an initial sequence. In the second phase, the 
local improvement procedure developed by Liaw 
(1999) is modified to take into account the sequence-
dependent setup cost. The modified procedure is used 
to adapt the sequence in the first phase to achieve a 
better schedule and a tighter upper bound. The 
improvement is obtained by an insertion procedure 
followed by a swap procedure. 
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4.1  Priority Dispatching Rule 

Step 1. Calculate the slack of each job i at time t,                
si = di - t - pi. 

Step 2. Calculate average processing time ( p ) of all 
remaining jobs. 

Step 3. Calculate priority index Ii(t) at time t of each  
remaining job. 

( )
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i
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2

0exp
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                              (26) 

 
where,  k is a look-ahead parameter. 
 

Step 4. Choose the job with the highest index to process 
next in the sequence. 

Step 5.  Repeat steps 1 to 4 until all jobs are included in 
the schedule. 

4.2  Local Improvement Procedure 

4.2.1  Insertion Procedure 

Step 1.  At iteration j, j = 1, 2,…, N, select job A as the 
job in position j. 

Step 2.  Select job B among [N/3] jobs nearest to job A. 
The candidate for job B is restricted since it 
seldom occurs that the best job B candidate is 
far away from job A selected. 

Step 3. Calculate the objective value (total cost of 
earliness- tardiness penalties and setup cost) 
after inserting job A before job B and compare 
with each one of the [N/3] cases. 

Step 4.  Select job B such that the resulting schedule has 
the minimum objective value. 

Step 5.  Insert job A before job B. 
Step 6.  Repeat steps 1 to 5 until j = N 

4.2.2  Swap Procedure 

Steps 1-2. They are the same as those of the insertion 
procedure. 

Step 3. Compute the objective value after interchanging 
job A and job B and compare with each one of 
the [N/3] cases. 

Step 4.  Select job B such that the resulting schedule has 
the minimum objective value. 

Step 5.  Swap jobs A and B 
Step 6.  Repeat steps 1 to 5 until j = N. 

5.  DOMINANCE CRITERIA 

In this section, the dominance criteria specially 
formulated for early/tardy problem with sequence-
dependent setup cost are presented. The criteria are an 
extension of precedence relations developed by Ow and 
Morton (1989) and Liaw (1999) so that they can 
incorporate sequence-dependent setup cost. Dominance 
criteria consist of adjacency condition and non-
adjacency condition, in which any adjacent and non-
adjacent job must satisfy these conditions, respectively. 
Any node which does not satisfy these conditions will 
be removed from a branch and bound search tree. 

5.1  Adjacency Condition 

Suppose that jobs i and j are adjacent pairs of jobs 
before the last position and jobs i and j lie between jobs 
x and y as shown in figure 1. The total sequence-
dependent setup cost, TSCij and TSCji, can be calculated 
using formulas (27) and (28) 

. 

           TSCij = SCxi + SCij + SCjy                    (27) 

 TSCji = SCxj + SCji + SCiy                             (28) 

 
When job i immediately precedes job j, Ωij and Ωji 

are defined as: 
 

 
 
 
  
 

 
 

Figure 1. Illustration of adjacency condition of jobs i and j. 
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where sx =  dx – t – px is the slack of job x. 
t = the sum of processing times of all 

preceding  jobs.   
 

The following condition must hold for all adjacent 
pairs of jobs: 

  AJCij  =  wipj - Ω ij(wi + hi) + TSCji             (30) 

        AJCji  =  wjpi - Ω ji(wj + hj) + TSCij             (31) 

        AJCij  ≥  AJCji                                       (32) 

x y i j

SCxi SCij SCiy 
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See the proof of adjacency condition in Appendix A.  

 
There are many nodes that are generated from the 

same parent node.  Thus, calculating the adjacency 
condition using formulas (27) to (32) for all nodes is 
time consuming. It is possible to reduce the 
computation time by calculating the adjacency 
condition only for the first node and using formula (33) 
for other nodes generated from the same parent node. 

         AJCij + ΔSCjy ≥ AJCji + ΔSCiy                                (33) 

where  ΔSCjy  =   SCjy of the node under consideration –     
SCjy of the first node 

ΔSCiy  =  SCiy of the node under consideration – 
SCiy of the first node. 

 
Proof: Consider any node generated from the same 
parent node. Jobs i and j are the same; hence, wipj - Ωij 
(wi + hi) is equal to wjpi - Ωji (wj + hj). The value of 
TSCij and TSCji are varied according to the last job. The 
only differences are SCjy and SCiy. Consequently, the 
adjacency condition can be computed by adding only 
the different values (ΔSCjy and ΔSCiy) to the same 
formula.  

The adjacency condition can be applied to the 
node at level 3 and higher. The reason can be shown by 
the following example. Suppose the node in level 2 is 
considered, e.g., node (1, 2). Since the setup cost is 
sequence-dependent, from formulas (27) and (28), SCjy 
and SCiy, cannot be determined. But if the node is 
branched further to level 3, e.g., node (1, 2, 3), in this 
case SCjy is SC23 and SCiy is SC13.  

5.2  Non-Adjacency Condition 

Suppose jobs i and j are non-adjacent pairs of jobs 
before the last position and they have the same 
processing  

time. Job i lies between jobs u and v and job j lies 
between jobs w and z as shown in figure 2. The total 
sequence-dependent setup cost, TSCij and TSCji, can be 
calculated using formulas (34) and (35). 

 
 

 
 

    
 
  
 
 
 

Figure 2. Illustration of non-adjacency condition of jobs i 
and j. 

 

             TSCij = SCui + SCiv + SCwj+ SCjz                          (34) 

      TSCji = SCuj + SCjv + SCwi+ SCiz                         (35) 
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where sx = dx – t – px is the slack of job x 
K = the sum of processing times of 

jobs between    jobs i and j 
 
All non-adjacent pairs of jobs in the optimal 

schedule must satisfy the following condition: 
 
if pi = pj, then 

        NJCij = wi (pj + K) - Δij (wi + hi) + TSCji          (37) 

       NJCji  = wj (pi + K) - Δji (wj + hj) + TSCij         (38) 

          NJCij  ≥  NJCji                                           (39) 

 
See the proof of non-adjacency condition in Appendix B.  

 
The non-adjacency condition can be applied to the 

node at level 4 and higher. In other words, at least four 
jobs must be in the sequence. For example, non-
adjacent jobs of the node at level 4 are jobs in positions 
1 and 3. The last job in position 4 is used to determine 
the sequence-dependent setup cost. 

6.  BRANCH AND BOUND ALGORITHM 

A network representation and branch and bound 
algorithm can be used to determine an optimal solution 
for the problem. A node represents a sub-problem or the 
sequence of jobs that are already scheduled. An arc 
leading to the node represents the associated cost of the 
node.   

 
Initialization step 

 
The branch and bound algorithm is started by 

determining an initial feasible solution to the problem. 
According to the two-phase heuristic procedures 
presented in section 4, the priority-dispatching rule is 
applied to establish the initial sequence. The local 
improvement procedures are used to modify the 
schedule obtained in the first phase in order to get a 
better sequence. The objective function value obtained 

z w v u i j 

t 

SCui SCiv SCwj SCjz 

K 
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from the two-phase heuristic is an initial upper bound of 
the objective function value. 

 
Steps for each iteration 

 
Step 1: Branching 

The branching strategy is called the depth-first 
branching rule.  Select the active (unfathomed) node at 
the highest level in the search tree for branching.  If 
there is more than one node at the highest level, select 
the one with the lowest associated cost. The selected 
node is called the parent node. Create branches from the 
parent node to the nodes representing jobs that have not 
been scheduled. 

 
Step 2: Bounding 

For each newly created node, the associated cost is 
calculated. The associated cost is the sum of the 
associated cost of its parent node and the cost due to the 
newly assigned job of that node. 

 
Step 3: Fathoming 

For each generated node, three computational tests 
are performed in the fathoming step. First, a node is 
fathomed if its associated cost is greater than or equal to 
the current upper bound of the problem (denoted by F1). 
Second, the dominance criteria described in section 5 
are applied to further reduce the number of nodes 
(denoted by F2). Dominance criteria consist of 
adjacency and non-adjacency conditions.  All pairs of 
jobs in the optimal schedule must satisfy these 
conditions. Note that the adjacency condition can be 
applied to the nodes at level 3 and higher, while the 
non-adjacency condition can be applied to the nodes at 
level 4 and higher. If the node is not eliminated by the 
above two tests, the lower bounds of each of three sub-
problems are computed according to the procedures 
presented in section 3. For fast elimination of nodes, the 
lower bounds of three sub-problems can be calculated 
in any sequence according to the characteristics of the 
problem under consideration. Suppose that the sequence 
of lower bound is LB1, LB2, and MSC. When the LB1 is 
determined, it is summed to the associated cost of the 
node and compared with the upper bound. If it is greater 
than or equal to the current upper bound, the node is 
fathomed (denoted by F3).  If the node is still not 
fathomed, the LB2 will be computed. The value of LB2 
+ LB1 + associated cost of the node will be again 
compared to the upper bound. If the node is still 
unfathomed, the MSC will be determined. Finally, the 
sum of lower bounds of three sub-problems (MSC + 
LB2 +LB1) plus the associated cost of that node is 
compared to the upper bound.  

The remaining unfathomed nodes are called active 
nodes.  When a complete sequence is found (all jobs are 

scheduled on the node), the node is fathomed (denoted 
by F4), and its objective function value will be 
compared with the current upper bound.  If the current 
upper bound is higher, replace the current upper bound 
by the objective function value of the complete 
sequence. 

 
Optimality test 
 
If some active nodes are still available, repeat the 

iteration steps; otherwise, stop.  After the algorithm is 
terminated, the node in which its objective function 
value is equal to the current upper bound represents the 
optimal solution and its objective function value is the 
optimal total costs. 

7.   ILLUSTRATIVE EXAMPLE 

The branch and bound algorithm can be illustrated 
using the following example. There are 4 jobs to be 
processed on a single machine. The data of sequence-
dependent setup cost, processing time, due date, and 
earliness and tardiness penalties are shown in Table 2 
and 3.      

          
Table 2. Setup cost matrix. 

 
 
 
 
 
 
 
              
 
             
              
 

Table 3. Job information. 

Job pi di hi wi 

1 3 8 2 9 

2 2 6 7 7 

3 4 10 3 8 

4 3 9 8 6 

 
The priority-dispatching rule generates the 

sequence of {1, 2, 4, 3} with the total cost of 89. The 
local improvement procedure modifies the sequence to 
be {2, 1, 4, 3} with a better total cost of 86, which is 

1 2 3 4 

1 0 15 33 3 

2 20 0 18 28 

3 35 8 0 10 

4 2 14 5 0 
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used as an initial upper bound for the problem. 
Figure 3 shows a complete network representation 

of the illustrative example. In iteration 1, nodes 1, 2, 3, 
and 4 are constructed, indicating that each of the four 
jobs could be processed in the first order of the 
sequence. The associated cost of each node is calculated 
and shown on an arc leading to that node. Then, the 
associated cost is compared to the upper bound. The 
node will be fathomed if the associated cost is higher 
than or equal to the upper bound.  

In order to further eliminate these nodes, the lower 
bounds of the three sub-problems are computed. Each 
time the lower bound is obtained, it is summed up with 

the associated cost and compared to the upper bound. If 
it is greater than or equal to upper bound, the node is 
fathomed. In this case, node {4} is fathomed.  

Then, select job 1 as the branching node because 
job 1 has the lowest objective function value among the 
three nodes. Job 1 is now assigned to the first order of 
the sequence. Then, branch from job 1 for jobs 2, 3, and 
4, and place each of jobs 2, 3, and 4 in the second order 
of the sequence. The associated cost and lower bounds 
of each node are calculated. Node {1,3} has the 
associated cost plus lower bounds (LB1+LB2) greater 
than the upper bound. Thus it is fathomed (making it an 
inactive node).   
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Four cases of fathoming criteria: 
F1 = Associated cost ≥ UB 
F2 = Adjacency or non-adjacency condition is 

not satisfied 
F3 = Associated cost + LB1 + LB2 + MSC ≥ UB 
F4 = Obtain the complete sequence 

F3 

F1 

F1 F3 

F4 

F3 

LB1=0 
LB2=6 
MSC=16

0 

1 2 3 4 

10 
28 18 
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LIP   {2,1,4,3}  cost = 86
Upper bound = 86    
New upper bound = 81 

F3 

Figure 3. Network representation of numerical example 
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Since node {1,2} has the lowest cost, place job 2 
in the second order. Branch from node {1,2} for the 
remaining jobs, which are jobs 3 and 4. At level 3, the 
dominance rule is applied. Since node {1,2,4} does not 
satisfy the adjacency condition, the node is fathomed.  
Branch from the node {1,2,3} to obtain the first 
complete sequence of {1,2,3,4} with the objective 
function value of 81. The obtained objective function 
value is less than the current upper bound; thus, set the 
new upper bound equal to the objective function value.  
Fathom all nodes that have their associated costs greater 
than the new upper bound. Repeat the iteration steps 
until all nodes are fathomed. After the algorithm is 
terminated, the optimal sequence is {3,2,1,4} with the 
objective function value of 76. 

8.  ANALYSIS OF COMPUTATIONAL 
PERFORMANCE 

The proposed branch and bound algorithm is 
implemented and computationally tested on a Pentium 
IV computer, 1.8 GHz CPU speed, 512MB RAM. The 
algorithms are coded in C language. The test problems 
are randomly generated based on the parameters as 
shown in Table 4. For each job, the values of pi, hi, and 
wi, are the same as those in Li (1997) and Liaw (1999).  
The setup costs are carefully selected to ensure that they 
are not dominated by early/tardy penalties. For due date 
setting, Liaw (1999) analyzed the influence of average 
lateness factor and relative range of due date on 

problem hardness. The results indicated that the 
problems are most difficult when a lateness factor (LF) 
= 0.6, and increasing the range of due date (RDD) 
seems to make the problem harder. For the test 
problems, LF and RDD are equal to 0.5 and 1, 
respectively, which result in high problem hardness. 
The look-ahead parameter (k) is equal to 3 according to 
a recommendation of Liaw (1999). 

The first test (Test 1) evaluates the performance of 
the algorithm against the number of jobs. Six test 
problems with different numbers of jobs (15, 20, 25, 30, 
35, and 40 jobs) are randomly generated. Each problem 
is tested by 30 randomly generated data sets. To 
evaluate the performance of upper bound, lower bounds, 
and dominance criteria, the second test (Test 2) 
compares the performance of the algorithm with and 
without implementation of these bounds and criteria for 
the problem of 20 and 30 jobs with the same parameter 
settings. For both tests, the program will terminate 
when the problem is not solved within 3,600 seconds in 
order to avoid excessive computational time. The 
number of unsolved problems is reported. 

The performance measures are computational time, 
number of generated nodes, and number of generated 
complete  solutions.  Table 5  and  figure 4  show  that  
the required computational time increases exponentially 
with the problem size (number of jobs).  This is an 
indication of an   NP-hard   problem.  The propose  
algorithm   can  solve 

the problem having up to 40 jobs in a reasonable 

 
Table 4. Parameter settings for the test problems. 

Parameters Range of value 
SCji Int U[1, 40] 
pi Int U[1, 10] 

di 
Int U[P(1- LF - RDD/2) , P(1 – LF + RDD/2)] 

where, LF = 0.5 and RDD = 1 
hi Int U[1, 10] 
wi Int U[1, 10] 
k 3 

Int U[a, b] = a set of integer numbers generated from a discrete uniform distribution within an interval [a, b] 
LF = Lateness factor  
RDD = Range of due date 
 
Table 5. Computational time required by the test problems (Test1). 

No. of 
jobs 

Avg. CPU 
time (sec) 

Avg. no. of 
generated nodes 

Avg. no. of generated 
completed solutions 

Total no. of  
nodes 

Total no. of 
solutions 

No. of problems 
unsolved (out of 30)

15 0.413 13,838.34 67.83 3.55 * 1012 1.307 * 1012 0 
20 4.48 94,351.67 161.27 6.61 * 1018 2.43 * 1018 0 
25 37.67 1.17 * 106 925.34 4.21* 1025 1.55 * 1025 0 
30 98.66 6.96 * 106 2,827.54 7.21 * 1032 2.65 * 1032 0 
35 885.26 4.87 * 107 17,410.67 2.808 * 1040 1.03 * 1040 4 
40 2847.33 2.83 * 108 89,455.37 2.21 * 1048 8.15 * 1047 10 
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time (2,847 seconds on the average, not including 
unsolved problems). Comparing between the average 
number of generated nodes and the total number of 
nodes, and between the average number of generated 
complete solutions and the total number of solutions, it 
is obvious that the algorithm is very efficient in 
fathoming the nodes.   

The efficiencies of upper bound, dominance 
criteria, and lower bound are summarized in Table 6. 
The results indicated that the lower bound is the most 
important feature of the algorithm. If the lower bound 
does not exist, branch and bound algorithm cannot 
efficiently solve even small sized problems. The 
dominance criteria are the second most important 
feature of the algorithm. The exclusion of dominance 
criteria results in a considerable increase in the 
computation time and the number of generated nodes 
for both problem sizes. The upper bound is the least 
important feature. However, for relatively large 
problems (No. of jobs = 30), the effect of upper bound 
is still significant.  

The upper bound derived from the two-phase 
heuristic procedures is the least important feature 
because it is only useful at the early stage of the 
computation.  It is applied to obtain the upper bound 

since the initialization step of the algorithm.  If the 
upper bound is not calculated at the initialization step, 
the equivalent or better one can still be obtained after 
the algorithm has found a sufficiently good incumbent 
solution and has spent some computational time.  
However, the good upper bound can save this amount 
of computational time and allow a number of nodes to 
be eliminated at the beginning of the search tree, 
especially for large-sized problem. 

On the other hand, the lower bound and 
dominance criteria are repeatedly calculated at every 
node, so they are capable of eliminating a larger number 
of nodes than the upper bound.  Note that the upper 
bound derived from the two-phase heuristic procedures 
is effective only at the early stage of the computation 
while the lower bound and dominance criteria are 
effective for all stages of computation. The lower bound 
calculates the least cost that  

will incur or the best objective value of that node if 
it is branched further.  When adding the lower bound to 
the associated cost of the particular node, there is a 
good chance that the cost of branching further will be 
greater than the current upper bound and the node will 
be eliminated.  The dominance criteria consider only the 
precedence relations of the adjacent and non-adjacent 
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Figure 4. Relationship between the computational time and number of jobs. 

 
Table 6. Comparison of efficiencies of each algorithm feature (Test 2). 

Algorithm settings No. of jobs Avg. CPU 
time (sec) 

Avg. no. of 
generated nodes 

Avg. no. of 
generated completed 

solutions 

No. of problems 
unsolved (out of 30)

UB is not used 20 7.75 391,702.5 899.75 0 
30 349.17 1.34 * 107 126,399.57 1 

Dominance criteria are 
not used 

20 28.12 963,951.42 195.73 0 
30 1426.18 8.27 * 107 4,974.76 3 

LB is not used 20 3,012.34 1.29 * 108 8,112.25 25 
30 Too long Unavailable Unavailable 30 

All features are used 20 3.67 89,135.34 148.34 0 
30 78.34 5.84 * 106 2,639.67 0 
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jobs within the node (the scheduled jobs).  They do not 
consider the effect of other jobs which are still not 
included in the sequence (the unscheduled jobs). 
Therefore, the lower bound has a greater effect on the 
performance of the algorithm than the dominance 
criteria. 

9.  CONCLUSIONS 

The network representation and branch and bound 
algorithm are developed to determine a global optimal 
production schedule on a single machine that minimizes 
total sequence-dependent setup cost and weighted 
earliness/tardiness penalties. It is assumed that the idle 
time cannot be inserted into the schedule. The problem 
is NP-hard, indicating that finding an optimal solution is 
difficult. Efficient lower bounds for three sub-problems 
are presented. The lower bounds of weighted early and 
tardy sub-problems are based on the algorithm proposed 
by Li (1997) whereas the lower bound of the sequence-
dependent setup sub-problem is based on the proposed 
heuristic.  Dominance criteria developed by Liaw (1999) 
are modified in order to incorporate sequence-
dependent setup cost which is shown to be efficient in 
reducing the number of nodes in the branch and bound 
search tree. The two-phase heuristic procedures, 
including the priority dispatching by Ow and Morton 
(1989) and the modification of local improvement 
procedure of Liaw (1999), are used for determining the 
upper bound.  The lower bounds, upper bound, and 
dominance criteria developed for the branch and bound 
algorithm are tested and proven effective. The 
computational results indicate that the lower bound 
greatly affects the performance of the branch and bound 
algorithm.  

Most of single-machine scheduling problems 
found in literature are special cases of the problem 
under consideration in this paper. The early/tardy 
problems with up to 50 jobs have been optimally solved 
using the branch and bound algorithm (Li, 1997; Liaw, 
1999). The problem addressed in this paper is more 
general and more complex since it also considers the 
sequence-dependent setup cost in the objective function. 
It is capable of solving problem with up to 40 jobs in 
reasonable time (1 hour). Parameters used in the 
experiment are set such that three cost elements (setup, 
early, tardy penalties) do not dominate each other, 
which makes the problem difficult to solve. It is 
expected that if one cost element dominates the others, 
the algorithm will be able to solve bigger problems. 
Moreover, the scheduling method in this paper can 
solve some special cases in the literature by only 
modifying some input parameters. 

For the problem investigated in this paper, it is 
assumed that the idle time cannot be inserted into the 

schedule. This is the case when the cost of keeping 
machine idle is greater than the earliness penalties, the 
capacity of machine is less than the demand, or the 
algorithm is used for scheduling the bottleneck machine. 
This paper also assumes that the setup cost is sequence-
dependent but the setup time is sequence-independent. 
The most recent paper by Sourd (in press) considered 
the problem where the idle time can be inserted and the 
setup time is sequence-dependent. The computational 
test has shown that the proposed branch and bound 
algorithm is limited to the problem with no more than 
20 jobs, which is a half of the problem size in this paper. 
Since the problem introduced by Sourd (in press) is 
more complex, it is limited to relatively small-sized 
problems. The algorithm presented in this paper is 
suitable in the situation when the idle time is not 
allowed and the setup time is sequence-independent. 
The application of either algorithm depends on the 
characteristics of the problem being considered in order 
to obtain the solution using less time and effort. 

In conclusion, for the weighted earliness/tardiness 
penalties with sequence-dependent setup cost problem 
where the idle time is not allowed in the schedule, the 
algorithm presented in this paper appears to work well 
for reasonable-sized problems. For large-sized problems, 
however, a heuristic approach is more practical. The 
algorithm developed in this paper can be used to 
provide a benchmark for the evaluation of heuristic 
algorithms. It is also useful for developing a heuristic 
based on the branch and bound approach. Recent 
developments in simulated annealing and tabu-search 
methods provide interesting approaches for finding 
good heuristic solutions. 
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APPENDIX A. Proof of Adjacency condition. 

Let c(ij) be the cost of sub-sequence {i,j} and c(ji) 
be the cost of inverse sub-sequence {j,i} 

There are six cases, which may occur for job i and 
j in the sequence as follows: 

1. Both jobs are early in both positions. 
2. One job is early in both positions, but another is 

early in the first position and tardy in the second 
position. 

3. Both jobs are early in the first position and tardy 
in the second position.  

4. One job is tardy in both positions, but another is 
early in both positions. 

5. One job is tardy in both positions, but another is 
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early in the first position and tardy in the second 
position. 

6. Both jobs are tardy in both positions 
 

The illustrations of all cases are shown in figure 5. 
The proof is similar to that in Ow and Morton(1989) 
with an addition of sequence-dependent setup cost.  

 
Case 1. Both jobs are early in both positions. 

 
Position of jobs i and j can be interchanged 

without affecting the cost of other jobs in the sequence. 
If adjacency condition holds, then c(ij) ≤ c(ji). 

                 jyijxiij SCSCSCTSC ++=           (40) 

ijjijjiii TSCpptdhptdhijc +−−−+−−= )()()(  (41) 

ijijjjjiii TSCphptdhptdhijc +−−−+−−= )()()(  (42) 

)()()( jjjiiiijij ptdhptdhijcphTSC −−−−−−=− (43) 

Similarly, 

iyjixjji SCSCSCTSC ++=               (44) 

 
 

(1) (2)

(4)(3) 

(5) (6)

di dj 

y

x j i y
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Figure 5. Illustration of adjacency condition cases 1 - 6 
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jijiiijjj TSCpptdhptdhjic +−−−+−−= )()()(   (45)  

jijiiiijjj TSCphptdhptdhjic +−−−+−−= )()()(  (46) 

)()()( jjjiiijiji ptdhptdhjicphTSC −−−−−−=− (47) 

Since job i is early in both positions (di - t - pi ≥ pj) 
thus, Ωij = pj.  Similarly, job j is early in both positions 
(dj - t - pj ≥ pi) thus, Ωji = pi. Substituting these values 
into adjacency condition gives: 

ijjjiijiijjiji TSChwppwhwppwTSC ++−≥+−+ )()(
 (48) 

By simplifying, 

ijijjiji TSCphphTSC +−≥−        (49) 

Substituting (43) and (47) into (49) gives: 

)()( jicijc ≤                           (50) 

Case 2.  One job is early in both positions, but another 
is early in the first position and tardy in the 
second position. 

ijjijjiii TSCpptdhptdhijc +−−−+−−= )()()(      
(51) 

ijijjjjiii TSCphptdhptdhijc +−−−+−−= )()()(  
(52 ) 

)()()( jjjiiiijij ptdhijcptdhphTSC −−−=−−+−

 (53) 

and, 

jiijiijjj TSCdpptwptdhjic +−+++−−= )()()(   
(54) 

jijiiiijjj TSCpwptdwptdhjic ++−−−−−= )()()(
(55)  

)()()( jjjiiijiji ptdhjicptdwpwTSC −−−=−−−+

(56) 

Since job i is early in the first position only (si < pj), 
thus Ωij = si.  While job j is early in both positions (sj ≥ 
pi), thus Ωji = pi.  Substitute these values in adjacency 
condition and then simplify the expression as presented 
in formula (57). 

ijjjiijiiijiji TSChwppwhwspwTSC ++−≥+−+ )()(
 (57) 

Substituting si = di – t – pi gives: 

    
ijijijij

iiiijiji

TSCphpwpw

hwptdpwTSC

+−−≥

+−−−+ ))((
           (58) 

By simplifying 

           
ijiiiij

iiijiji

TSCptdhph

ptdwpwTSC

+−−+−≥

−−−+

)(

)(
              (59) 

Similarly, substituting (53) and (56) into (59) gives: 

                   )()( jicijc ≤                             (60) 

The same procedure is repeated for the remaining 
cases of i and j. 

APPENDIX B. Proof of Non-adjacency 
condition. 

Similar to the proof of adjacency condition, there 
are also six cases which can occur for jobs i and j in the 
sequence. Non-adjacency condition can be applied only 
when the processing time of non-adjacent pairs of jobs 
are equal. Therefore, changing the position of jobs i and 
j are not affecting the cost of other jobs in the sequence. 
If non-adjacency condition holds, then c(ij) ≤ c(ji). 

 
Case 1. Both jobs are early in both positions as shown 
in figure 6.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Illustration of non-adjacency condition case 1. 
 

      jzwjivuiij SCSCSCSCTSC +++=           (61) 

ijjijjiii TSCpKptdhptdhijc +−−−−+−−= )()()(  (62)                        

u

zw v u j i 

t 

SCuj SCjv SCwi SCiz 

  K 

zv i j 

    t 

SCui SCiv SCwj SCjz 

  K 

w 

di dj

di dj
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ijijjjjiii TSCKphptdhptdhijc ++−−−+−−= )()()()(     (63) 

)()()()( jjjiiiijij ptdhptdhijcKphTSC −−−−−−=+−

 (64) 

and, 

izwijvujji SCSCSCSCTSC +++=         (65) 

jiijiijjj TSCpKptdhptdhjic +−−−−+−−= )()()(
(66) 

jijiiiijjj TSCKphptdhptdhjic ++−−−+−−= )()()()(                                                                                  
(67) 

)()()()( jjjiiijiji ptdhptdhjicKphTSC −−−−−−=+−

 (68) 

Since job i is early in both positions (di - t - pi ≥ pj 
+ K), thus, ∆ij = pj + K.  Similarly, job j is early in both 
positions (dj - t - pj ≥ pi + K) thus, ∆ji = pi+ K.  
Substituting these values into non-adjacency condition 
gives: 

   
ijjjiij

iijjiji

TSChwKpKpw

hwKpKpwTSC

+++−+≥

++−++

))(()(

))(()(
   (69) 

This can be reduced to: 

ijijjiji TSCKphKphTSC ++−≥+− )()(  (70) 

Similarly, substituting (64) and (68) into (70) gives: 

)()( jicijc ≤                              (71) 

The same procedure can be repeated for the 
remaining cases of jobs i and j. 
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