
IEMS Vol. 3, No. 2, pp. 100-115, December 2004.

Branch and Bound Approach for
Single-Machine Sequencing with Early/Tardy
Penalties and Sequence-Dependent Setup Cost

Chananes Akjiratikarl
Industrial Engineering Program

Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, THAILAND
Tel: +662- 986-9009 ext. 2107, Fax: +662-986-9112, E-mail: pisal@siit.tu.ac.th

Pisal Yenradee†

Industrial Engineering Program
Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12121, THAILAND

Tel: +662- 986-9009 ext. 2107, Fax: +662-986-9112, E-mail: pisal@siit.tu.ac.th

Abstract. The network representation and branch and bound algorithm with efficient lower and upper bounding
procedures are developed to determine a global optimal production schedule on a machine that minimizes
sequence-dependent setup cost and earliness/tardiness penalties. Lower bounds are obtained based on heuristic
and Lagrangian relaxation. Priority dispatching rule with local improvement procedure is used to derive an initial
upper bound. Two dominance criteria are incorporated in a branch and bound procedure to reduce the search
space and enhance computational efficiency. The computational results indicate that the proposed procedure
could optimally solve the problem with up to 40 jobs in a reasonable time using a personal computer.

Keywords: Single-machine scheduling, Branch and bound, Lagrangian relaxation, Heuristic, Early/tardy,
Sequence-dependent setup cost

1. INTRODUCTION

Scheduling has been applied in a wide range of
manufacturing activities. An efficient production
schedule can result in substantial cost reduction and
increased customer satisfaction. In this paper, a multi-
item single-machine scheduling problem to minimize
total cost is presented. The total cost is the sum of
earliness/tardiness penalties of jobs and sequence-
dependent setup cost. A single machine scheduling
method is useful not only for scheduling jobs on a
single machine but also for generating a master
production schedule of flow shop and job shop where
there is a single bottleneck work center.

The earliness/tardiness problem arises in the Just-
In-Time (JIT) scheduling environment in which jobs are
forced to be completed as close to their due dates as
possible. Jobs that are completed early must be held in
finished goods inventory and an earliness penalty
(inventory holding cost) may be incurred, while jobs
that are completed after their due dates may cause a
tardiness penalty due to customer dissatisfaction, and
compensation or contract penalty. These penalties could

be different among jobs based on the values, priority of
jobs, and customers.

In multi-item single-machine production systems,
setup cost is incurred when production is switched from
one job to another. The setup that depends only on the
job to be processed is called sequence-independent
setup and the setup that depends on the job to be
processed and its immediately preceding job is called
sequence-dependent setup. The setup costs, which occur
due to the changing of mold, retooling, rearrangement
of workstations, or the extent of cleaning required
between process runs, are usually dependent of the
degree of similarity between consecutive jobs, for
example, sizes, shapes, and colors.

A number of studies involve single-machine
scheduling problems. Table 1 presents a list of different
objective functions that appeared in the literature.

1.1 Related Works on the Setup
(Changeover) Cost

Glassey (1968) proposed an algorithm to determine
the job sequence that minimizes the total number of

† : Corresponding Author

 Branch and Bound Approach for Single-Machine Sequencing with … 101

Table 1. List of related papers in literature.

Objective Functi Condition(s) Setup time
(STji)

Setup Cost
(SCji)

Earliness
Cost(hi)

Tardiness
Cost(wi)

Authors

Min no. of chageovers
tardiness is

0 1 0 M Glassey (1968)
not allowed

Min seq-dep changeover tardiness is
0 Seq-dep 0 M Driscoll and Emmoms (1977)

Cost not allowed

 SCji = 1 if j<i

0

0 M Hu et al. (1987)
Min seq-dep changeover SCji = 0 if j>=i SCji = 1 if j<i

Cost tardiness is SCji = 0 if j>=i

 not allowed

Min weighted tardiness 0 0 0 R Potts and Wassenhove (1984)

0 0 R R

Abdul-Razaq and Potts (1988),
Min weighted earliness- Ow and Morton (1989),
tardiness penalties Li (1997), Liaw (1999),
 Ibaraki and Nakamura (1994)
Min total earliness-tardiness hi = api,

0 0 api bpi Yano and Kim (1991)
penalties wi = bpi

Min weighted earliness-tardiness
 Seq-dep 0

R R
Coleman (1992)

penalties with seq-dep setup time

Min weighted earliness-tardiness commom
0 0 R R

Mondal and Sen (2001),

penalties with common due date due date Azizoglu and Webster (1997)

Min total earliness-tardiness commom

Seq-dep 0

hi = hj wi = wj

Rabadi et al. (2004) penalties with common due date due date for all i,j for all i,j

and seq-dep setup time
Min total earliness-tardiness idle time

0 0
hi = hj wi = wj

Chang (1999) , Ventura (2003)
penalties with inserted idle time is allowed for all i,j for all i,j
Min total earliness-square
tardiness penalties with idle time

0 0
hi = hj wi = wj

Shaller (2004)
Inserted idle time is allowed for all i,j for all i,j

Min weighted earliness-tardiness idle time
0 0 R R Chen and Lin (2002)

penalties with inserted idle time is allowed

Min weighted earliness-tardiness idle time

Seq-dep Seq-dep R R Sourd (in press) penalties with seq-dep setup cost is allowed

and time
 R = Real data
 M = Big positive number
 pi = Processing time of job i
 a, b = positive real numbers t2

102 Chananes Akjiratikarl· Pisal Yenradee

changeovers of the machine when tardiness is not
allowed. The problem was modeled as a shortest path
problem. Driscoll and Emmons (1977) developed a
similar work with the objective of minimizing
sequence-dependent changeover penalty. They reported
the use of forward-time and backward-time dynamic
programming with the application of monotonicity
property to find an optimal solution. A more specific
problem of setup cost was considered by Hu et al.
(1987). In this paper, the setup cost when switching
from producing item j to item i is one dollar if j is less
than i, and zero if j is greater than or equal to i. The
setup time of these studies is assumed to be negligible.
The review of scheduling literature considering setup can
be found in Allahverdi et al. (1999).

1.2 Related Works on the Earliness and
Tardiness

The scheduling problems with earliness and
tardiness penalties have received much interest due to
the growing adoption of the JIT manufacturing
philosophy. A special case known as a common due
date problem was studied by a number of researchers.
Mondal and Sen (2001) investigated a graph search
space algorithm with depth-first branch and bound
scheme to the weighted earliness and tardiness problem
with a restricted (small) due date. Azizoglu and Webster
(1997) introduced a branch and bound algorithm and a
beam search procedure to solve the problem with the
sequence-dependent family setup time where the due
date is common and unrestricted (large). A recent paper
by Rabadi et al. (2004) considered the same problem
with sequence-dependent setup time but earliness and
tardiness are weighted equally. The branch and bound
algorithm was developed to solve the problem with up
to 25 jobs.

The scheduling problem with non-identical due
dates was investigated by many researchers. Potts and
Wassenhove (1985) presented a branch and bound
algorithm with Lagrangian relaxation and multiplier
adjustment procedure for the total weighted tardiness
problem. For a weighted earliness and tardiness case,
Abdul-Razaq and Potts (1988) proposed a branch and
bound technique with the use of a relaxed dynamic
programming procedure by mapping state-space onto a
smaller state-space and performing recursion to obtain a
good lower bound. The lower bound is further
improved through the use of state-space modifier. The
problem can handle up to 20 jobs with reasonable
computational time. Ow and Morton (1989) presented a
series of heuristics, dispatch priority rules and a filtered
beam search technique, to provide near optimal solution
with relatively small search tree when the number of
jobs is less than 30. Ibaraki and Nakamura (1994) used
a Successive Sublimation Dynamic Programming

method for the same problem by performing several
types of dynamic programming recursions on a number
of generated states. The method succeeds in effectively
solving problems with up to 35 jobs. Li (1997)
developed a branch and bound algorithm based on
decomposition of the problem into two sub-problems.
The lower bound of each sub-problem is obtained
using Lagrangian relaxation with multiplier
adjustment procedure. The algorithm can be used to
solve the problems with up to 50 jobs. Liaw (1999)
proposed a similar technique in which the lower
bounds are computed using Lagrangian relaxation
with multiplier adjustment and single pass procedure.
The upper bound is obtained using two-phase heuristic
procedures. Simple dominance rules are also derived
to help eliminating nodes in the branch and bound
search tree. The computational experiments show that
the algorithm performs very well on problems with up
to 50 jobs. Coleman (1992) proposed a simple mixed
integer-programming model for a weighted earliness
and tardiness problem with sequence-dependent
setup time. The model can handle the problem up to
8 jobs. Yano and Kim (1991) discussed a problem
where the earliness and tardiness weights are
proportional to the processing times of the jobs.
Dominance criteria are derived which eliminate
many possible sequences from consideration in the
branch and bound procedure.

Many authors considered the problem where the
idle time can be inserted into the schedule. Chang (1999)
applied branch and bound algorithm with the lower
bound based on overlap elimination procedure for the
un-weighted earliness and tardiness problem. Ventura
and Radhakrishnan (2003) formulated the same
problem as 0-1 linear program. They implement
Lagrangian relaxation procedure that utilizes the sub-
gradient algorithm to obtain near optimal solutions.
Shaller (2004) presented a timetabling algorithm that
inserts idle time into a schedule in order to minimize the
sum of job earliness and the square of job tardiness and
establish a lower bound for a branch and bound method.
The weighted earliness and tardiness case was
considered by Chen and Lin (2002). They utilized a
dominance rule to develop a relationship matrix and
combined this matrix with a branching strategy to solve
the problem. The most recent paper by Sourd (in press)
also used branch and bound procedure for the same
problem but with sequence-dependent setup time and
cost between group of products. The time-indexed
formulation with different relaxations was proposed to
obtain the lower bound for the problem. The
computational result has shown that the algorithm is
limited to problems with no more than 20 jobs. Those
interested in early/tardy problems are referred to Baker
and Scudder (1990) for comprehensive survey of the

 Branch and Bound Approach for Single-Machine Sequencing with … 103

previous literature.
Since the problem of Sourd (in press) is general

and complex, the representation of the schedule and the
algorithm are complicated. This results in a long
computational time. Hence, it is only applicable to
small-sized problems (up to 20 jobs). This paper aims
to develop a simpler algorithm and schedule
representation, which also guarantees the global optimal
solution for larger problems. However, some assumptions
are required. The problem under consideration in this
paper is based on assumptions that the idle time cannot
be inserted into the schedule and setup time is
sequence-independent. In this case, the setup time can
be added directly to the processing time. The insertion
of idle time in the schedule can reduce the earliness of
the jobs. However, this may not be appropriate for some
situations, where the idle cost is higher than the
earliness penalties, the capacity of machine is less than
the demand, or the machine under consideration is a
bottleneck resource, etc.

However, the problem under consideration in this
paper is a general case of many problems presented in
the literature (Abdul-Razaq and Potts (1988), Azizoglu
and Webster (1997), Driscoll and Emmons (1977),
Glassey (1968), Hu et al. (1987), Ibaraki and Nakamura
(1994), Li (1997), Liaw (1999), Mondal and Sen
(2001), Ow and Morton (1989), Potts and Wassenhove
(1985), Yano and Kim (1991)). It can be easily adapted
to deal with these problems by modifying some input
parameters.

This paper is organized as follows: the next section
describes the scheduling problem under consideration;
sections 3 and 4 describe the derivation of lower bounds
and upper bound, respectively; section 5 explains the
dominance criteria; the branch and bound algorithm and
an illustrative example are described in sections 6 and 7;
computational performance is analyzed and discussed
in section 8; finally, conclusions and recommendations
for further studies are presented in section 9.

2. PROBLEM DESCRIPTIONS

X is a set of N independent jobs {x1, x2,…, xN}
which are to be scheduled non-preemptively on a
machine that can handle at most one job at a time.
Once the current job is finished, the next job is started
immediately without an idle time. The sequence-
dependent setup cost is described by a matrix SC =
[SCji], where SCji is the cost of switching from job j to i.
The setup cost of the first job, i.e. SC0i, is assumed to be
zero. The setup time is sequence-independent and is
added to the processing time. Each job is available at
time zero and its distinct due date di is known. The
processing requirement pi is expressed in days of
production, which can be obtained from a demand of

job I, Qi, divided by its production rate Rpi. The
earliness and tardiness penalties per period are
represented by hi and wi, respectively. If the completion
time Ci is before the due date, the earliness of job i is
determined from Ei = max (0, di – Ci). If the job is
completed after the due date, the tardiness of job i is
then determined from Ti = max (0, Ci – di).

The above-mentioned problem can be found in
many types of industries that adopt the Just-In-Time
(JIT) production philosophy. Under JIT philosophy,
jobs should be finished right at the due date since both
early and tardy completions have penalties. The tardy
penalty cost is normally higher than the early penalty
cost. Both penalty costs may be dependent of the jobs.
The JIT philosophy will also cause frequent setups. As
a result, the total setup costs are high and should be
considered explicitly in the objective function. For
many production environments, the setup cost of a
machine depends on the production sequence. The
magnitude of setup cost often depends on the similarity
of the process technology requirements of two
consecutive jobs. The sequence-dependent setup
problems can be found in the production of different
colors of paint, strengths of detergent, and blends of
fuel (see Morton and Pentico, 1993).

3. LOWER BOUND DERIVATION

In this section, procedures for deriving lower
bounds are presented. The problem is decomposed
into three sub-problems: weighted early, weighted
tardy, and sequence-dependent setup. Based on the
sequence of jobs, yji = 1 if job j precedes job i;
otherwise yji = 0.

The early/tardy problem with sequence-dependent
setup cost can be written as (P):

(P) ()∑
=

++=
N

i
jijiiiii SCyTwEhV

1
Min (1)

subject to

)5(

)4(0

)3(

)2(0

iii

i

iii

i

dCT

T

CdE

E

−≥

≥

−≥

≥

The problem P can be decomposed into three sub-
problems P1, P2, and P3 as follows:

Sub-problem P1, weighted earliness sub-problem

(P1) ∑
=

=
N

i
ii EhV

1
1 Min (6)

104 Chananes Akjiratikarl· Pisal Yenradee

subject to

)8(

)7(0

iii

i

CdE

E

−≥

≥

Sub-problem P2, weighted tardiness sub-problem

(P2) ∑
=

=
N

i
iTwV

1
2 Min (9)

subject to

)11(

)10(0

iii

i

dCT

T

−≥

≥

Sub-problem P3, sequence-dependent setup sub-
problem

(P3) ∑
=

=
N

i
jiji SCyV

1
3 Min (12)

The lower bounds of P1, P2, and P3 can be used to
obtain the lower bound for P. The lower bounds of
weighted early and weighted tardy sub-problems are
computed based on Lagrangian relaxation, and a
multiplier adjustment method is used to compute the
value of Lagrange multipliers. The lower bound of
sequence-dependent setup sub-problem is obtained
using a minimum setup heuristic. The lower bounding
procedures developed by Li (1997) are used to obtain
the lower bounds for P1 and P2. The heuristic used to
obtain the lower bound for P3 is developed in this paper.
The lower bound for the problem is the sum of the three
lower bounds. The proof of this statement is adapted
from Li (1997) with the addition of sequence-dependent
setup sub-problem P3.

Theorem 1. If V1, V2, V3, and V are the minimum
objective functions of P1, P2, P3, and P, respectively,
then V1 + V2 + V3 ≤ V.

Proof. Let α be an optimal schedule and V = C1 + C2 +
C3, where ∑

=
=

N

i
ii EhC

1
1 , the total early cost of

sequence α. ∑
=

=
N

i
iTwC

1
2 , the total tardy cost of

sequence α, ∑
=

=
N

i
jiji SCyC

1
3 , the total setup cost

of sequence α. Therefore, V1 ≤ C1, V2 ≤ C2 , and V3 ≤
C3 . Since V = C1 + C2 + C3 , then V1 + V2 + V3 ≤ V.

Lemma 1. If LB1, LB2, LB3 are lower bounds for P1,
P2, and P3, respectively, then LB1 + LB2 + LB3 is a
lower bound for P.

Proof. Since LB1, LB2, LB3 are lower bounds for P1,
P2, and P3, respectively, then LB1 ≤ V1, LB2 ≤ V2, LB3
≤ V3. Therefore, LB1 + LB2 + LB3 ≤ V1 + V2 + V3.
From Theorem 1, V1 + V2 + V3 ≤ V, then LB1 + LB2 +

LB3 ≤ V, a lower bound for P.

3.1. Lower Bound for Sub-Problem P1

A Lagrangian relaxation of constraint 8 yields the
Lagrangian problem LR1:

(LR1) () () ()[]∑
=

−+−=
N

i
iiiiii CdEhL

1
1 Min λλλ (13)

subject to

 0≥iE (14)

where, ()Nλλλλ,,, 21= is the vector of
corresponding multipliers. In LR1, the objective
function can be expanded as follows:

 () ()∑ ∑∑
= ==

−+−=
N

i

N

i
ii

N

i
iiiii CdEhL

1 11
1 MaxMin λλλλ (15)

According to Li (1997), for any choice of
nonnegative multipliers, L1(λ) provides a lower bound
for problem P1. The first term can be minimized by
setting all Ei = 0 if hi – λi ≥ 0. The second term is a
constant. The third term can be maximized using the
weighted longest processing time rule (WLPT), that is,
sequencing jobs in non-decreasing order of λi/pi.
Assume that the jobs generated by the heuristic
presented in section 3.1.1 are renumbered so that the
sequence is (1, 2,…, N). Also, let Ci* be the completion
time of jobs when they are sequenced by the heuristic.
Then, a lower bound L1(λ) can be determined from the
Lagrangian dual sub-problem D1.

(D1) ()∑
=

−=
N

i
iii CdL

1

*
1 Min λ (16)

subject to

 1,.......,1
1

1 −=≤
+

+ Ni
pp i

i

i

i λλ
 (17)

 1,.......,10 −=≤≤ Nihiiλ (18)

The multiplier adjustment method developed by
Potts and Wassenhove (1985) requires the following
heuristic to sequence the jobs. Then, Li (1997) used this
method to solve the problem. The multipliers obtained
from the heuristic can solve the Lagrangian problem so
that the resulting lower bound is as large as possible.

Heuristic for solving Lagrangian dual sub-problem
D1
Step1. Sequence jobs by WLPT rule. Set Ei = di – Ci

*,

i = 1,…, N and NiEpV k

N

ik
ki ,...,1, == ∑

=

Step 2. Set VN+1 = 0, S1 = {N + 1}, and k = N
Step 3. For k = N to 1, when k < 1 go to step 4
 Let m be the smallest integer in set S1

 Branch and Bound Approach for Single-Machine Sequencing with … 105

 If Vk > Vm , then include k in set S1,
 i.e., S1 = S1 ∪ {k}

 Set k = k – 1
Step 4. Set k = 1, and S1 = S1 - { N + 1}
Step 5. For k = 1 to N, when k > N terminate

 If k = 1 and k ∉ S1, then λk = 0
 If k > 1 and k ∉ S1, then λk = λk-1 (pk/pk-1)
 If k ∈ S1, then λk = hk
 k = k + 1

The Lagrangian multiplier (λi) and Ci* can be

obtained from the above heuristic. Then L1 can be
calculated and used as a lower bound LB1 for sub-
problem P1.

 3.2. Lower Bound for Sub-Problem P2

A Lagrangian relaxation of constraint 11 yields the
Lagrangian problem LR2:

(LR2) () () ()[]∑
=

−+−=
N

i
iiiiii dCTwL

1
2 Min λλλ (19)

subject to

0≥iT (20)

where, ()Nλλλλ,,, 21= is the vector of
corresponding multipliers. Similar to LR1, LR2 can be
solved using the weighted shortest processing time rule
(WSPT) by setting Ti = 0 if wi – λi ≥ 0. Then, the lower
bound L2(λ) can be obtained from D2.

(D2) ()∑
=

−=
N

i
iii dCL

1

*
2 Min λ (21)

subject to

 1,.......,1
1

1 −=≥
+

+ Ni
pp i

i

i

i λλ
(22)

 1,.......,10 −=≥≥ Niw ii λ (23)

Similarly, the multiplier adjustment method is used

to solve the problem.
Heuristic for solving Lagrangian dual sub-problem

D2.
Step 1. Sequence jobs by the WSPT rule. Set Ti = Ci

*- di,

i = 1,…, N and NiTpV k

i

k
ki ,...,1,

1
== ∑

=

Step 2. Set V0 = 0, S2 = {0}, and k = 1
Step 3. For k = 1 to N, when k > N go to step 4
 Let m be the largest integer in set S2
 If Vk > Vm , then include k in set S2,
 i.e., S2 = S2 ∪ {k}
 Set k = k + 1
Step 4. Set k = N, and S2 = S2 - {0}

Step 5. For k = N to 1, when k < 1 terminate
 If k = N and k ∉ S2, then λk = 0
 If k < N and k ∉ S2, then λk = λk+1 (pk/pk+1)
 If k ∈ S2, then λk = wk
 k = k - 1

The Lagrangian multiplier (λi) and Ci* can be

obtained from the above heuristic. Then L2 can be
calculated and used as a lower bound LB2 for sub-
problem P2.

3.3. Lower Bound for Sub-Problem P3

A Lower bound of sub-problem P3 can be obtained
using minimum setup heuristic developed in this paper.
Minimum setup heuristic

Let Sl be an ordered set of scheduled jobs of
each node at level l excluding the last job in the
schedule; at level 0, So = ∅. S′l is a set of unscheduled
jobs of that node at level l. N - l is a number of elements
in set S′l, where N is the total number of jobs.

Step 1. For each node, determine set Sl and S′l .
Step 2. For i = 1 to N – l, Calculate the minimum sequence-

dependent setup cost (
ixMSC) of each element

xi.

)(Min

'

ij

li

lj

ij
i xx

Sx
Sx
xxx SCMSC

∈
∉
≠

= (24)

where,
ij xxSC is the sequence-dependent setup

cost from job xj to xi.
Step 3. Calculate the minimum sequence-dependent
setup cost of the node (MSCl)

 ∑
−

=

=
lN

i
xl i

MSCMSC
1

 (25)

Then, the MSCl is used as a lower bound LB3 for
sub-problem P3.

4. UPPER BOUND DERIVATION

In this section, two-phase heuristic procedures are
used to determine an initial feasible solution for the
problem. The priority dispatching rule developed by
Ow and Morton (1989) is used in the first phase to
establish an initial sequence. In the second phase, the
local improvement procedure developed by Liaw
(1999) is modified to take into account the sequence-
dependent setup cost. The modified procedure is used
to adapt the sequence in the first phase to achieve a
better schedule and a tighter upper bound. The
improvement is obtained by an insertion procedure
followed by a swap procedure.

106 Chananes Akjiratikarl· Pisal Yenradee

4.1 Priority Dispatching Rule

Step 1. Calculate the slack of each job i at time t,
si = di - t - pi.

Step 2. Calculate average processing time (p) of all
remaining jobs.

Step 3. Calculate priority index Ii(t) at time t of each
remaining job.

()

()

()

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−

<<⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

≤<
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
−

≤

=
−

otherwise
p
h

pkspk
wh

w
if

ppk
swh

p
w

h

pk
hw

w
sif

ph
swh

p
w

sif
p
w

tI

i

i

i
ii

i

i

iii

i

i
i

ii

i
i

i

iii

i

i

i
i

i

i 3

2

0exp

0

 (26)

where, k is a look-ahead parameter.

Step 4. Choose the job with the highest index to process
next in the sequence.

Step 5. Repeat steps 1 to 4 until all jobs are included in
the schedule.

4.2 Local Improvement Procedure

4.2.1 Insertion Procedure

Step 1. At iteration j, j = 1, 2,…, N, select job A as the
job in position j.

Step 2. Select job B among [N/3] jobs nearest to job A.
The candidate for job B is restricted since it
seldom occurs that the best job B candidate is
far away from job A selected.

Step 3. Calculate the objective value (total cost of
earliness- tardiness penalties and setup cost)
after inserting job A before job B and compare
with each one of the [N/3] cases.

Step 4. Select job B such that the resulting schedule has
the minimum objective value.

Step 5. Insert job A before job B.
Step 6. Repeat steps 1 to 5 until j = N

4.2.2 Swap Procedure

Steps 1-2. They are the same as those of the insertion
procedure.

Step 3. Compute the objective value after interchanging
job A and job B and compare with each one of
the [N/3] cases.

Step 4. Select job B such that the resulting schedule has
the minimum objective value.

Step 5. Swap jobs A and B
Step 6. Repeat steps 1 to 5 until j = N.

5. DOMINANCE CRITERIA

In this section, the dominance criteria specially
formulated for early/tardy problem with sequence-
dependent setup cost are presented. The criteria are an
extension of precedence relations developed by Ow and
Morton (1989) and Liaw (1999) so that they can
incorporate sequence-dependent setup cost. Dominance
criteria consist of adjacency condition and non-
adjacency condition, in which any adjacent and non-
adjacent job must satisfy these conditions, respectively.
Any node which does not satisfy these conditions will
be removed from a branch and bound search tree.

5.1 Adjacency Condition

Suppose that jobs i and j are adjacent pairs of jobs
before the last position and jobs i and j lie between jobs
x and y as shown in figure 1. The total sequence-
dependent setup cost, TSCij and TSCji, can be calculated
using formulas (27) and (28)

.

 TSCij = SCxi + SCij + SCjy (27)

 TSCji = SCxj + SCji + SCiy (28)

When job i immediately precedes job j, Ωij and Ωji

are defined as:

Figure 1. Illustration of adjacency condition of jobs i and j.

⎪
⎩

⎪
⎨

⎧

≥
<<

≤
=Ω

yxy

yxx

x

xy

psifp
psifs

sif
0

00
 (29)

where sx = dx – t – px is the slack of job x.
t = the sum of processing times of all

preceding jobs.

The following condition must hold for all adjacent
pairs of jobs:

 AJCij = wipj - Ω ij(wi + hi) + TSCji (30)

 AJCji = wjpi - Ω ji(wj + hj) + TSCij (31)

 AJCij ≥ AJCji (32)

x y i j

SCxi SCij SCiy

 Branch and Bound Approach for Single-Machine Sequencing with … 107

See the proof of adjacency condition in Appendix A.

There are many nodes that are generated from the

same parent node. Thus, calculating the adjacency
condition using formulas (27) to (32) for all nodes is
time consuming. It is possible to reduce the
computation time by calculating the adjacency
condition only for the first node and using formula (33)
for other nodes generated from the same parent node.

 AJCij + ΔSCjy ≥ AJCji + ΔSCiy (33)

where ΔSCjy = SCjy of the node under consideration –
SCjy of the first node

ΔSCiy = SCiy of the node under consideration –
SCiy of the first node.

Proof: Consider any node generated from the same
parent node. Jobs i and j are the same; hence, wipj - Ωij
(wi + hi) is equal to wjpi - Ωji (wj + hj). The value of
TSCij and TSCji are varied according to the last job. The
only differences are SCjy and SCiy. Consequently, the
adjacency condition can be computed by adding only
the different values (ΔSCjy and ΔSCiy) to the same
formula.

The adjacency condition can be applied to the
node at level 3 and higher. The reason can be shown by
the following example. Suppose the node in level 2 is
considered, e.g., node (1, 2). Since the setup cost is
sequence-dependent, from formulas (27) and (28), SCjy
and SCiy, cannot be determined. But if the node is
branched further to level 3, e.g., node (1, 2, 3), in this
case SCjy is SC23 and SCiy is SC13.

5.2 Non-Adjacency Condition

Suppose jobs i and j are non-adjacent pairs of jobs
before the last position and they have the same
processing

time. Job i lies between jobs u and v and job j lies
between jobs w and z as shown in figure 2. The total
sequence-dependent setup cost, TSCij and TSCji, can be
calculated using formulas (34) and (35).

Figure 2. Illustration of non-adjacency condition of jobs i
and j.

 TSCij = SCui + SCiv + SCwj+ SCjz (34)

 TSCji = SCuj + SCjv + SCwi+ SCiz (35)

Δij and Δji are defined as:

⎪
⎩

⎪
⎨

⎧

+≥+
+<<

≤
=Δ

KpsifKp
Kpsifs

sif

yxy

yxx

x

xy 0
00

 (36)

where sx = dx – t – px is the slack of job x
K = the sum of processing times of

jobs between jobs i and j

All non-adjacent pairs of jobs in the optimal

schedule must satisfy the following condition:

if pi = pj, then

 NJCij = wi (pj + K) - Δij (wi + hi) + TSCji (37)

 NJCji = wj (pi + K) - Δji (wj + hj) + TSCij (38)

 NJCij ≥ NJCji (39)

See the proof of non-adjacency condition in Appendix B.

The non-adjacency condition can be applied to the

node at level 4 and higher. In other words, at least four
jobs must be in the sequence. For example, non-
adjacent jobs of the node at level 4 are jobs in positions
1 and 3. The last job in position 4 is used to determine
the sequence-dependent setup cost.

6. BRANCH AND BOUND ALGORITHM

A network representation and branch and bound
algorithm can be used to determine an optimal solution
for the problem. A node represents a sub-problem or the
sequence of jobs that are already scheduled. An arc
leading to the node represents the associated cost of the
node.

Initialization step

The branch and bound algorithm is started by

determining an initial feasible solution to the problem.
According to the two-phase heuristic procedures
presented in section 4, the priority-dispatching rule is
applied to establish the initial sequence. The local
improvement procedures are used to modify the
schedule obtained in the first phase in order to get a
better sequence. The objective function value obtained

z w v u i j

t

SCui SCiv SCwj SCjz

K

108 Chananes Akjiratikarl· Pisal Yenradee

from the two-phase heuristic is an initial upper bound of
the objective function value.

Steps for each iteration

Step 1: Branching

The branching strategy is called the depth-first
branching rule. Select the active (unfathomed) node at
the highest level in the search tree for branching. If
there is more than one node at the highest level, select
the one with the lowest associated cost. The selected
node is called the parent node. Create branches from the
parent node to the nodes representing jobs that have not
been scheduled.

Step 2: Bounding

For each newly created node, the associated cost is
calculated. The associated cost is the sum of the
associated cost of its parent node and the cost due to the
newly assigned job of that node.

Step 3: Fathoming

For each generated node, three computational tests
are performed in the fathoming step. First, a node is
fathomed if its associated cost is greater than or equal to
the current upper bound of the problem (denoted by F1).
Second, the dominance criteria described in section 5
are applied to further reduce the number of nodes
(denoted by F2). Dominance criteria consist of
adjacency and non-adjacency conditions. All pairs of
jobs in the optimal schedule must satisfy these
conditions. Note that the adjacency condition can be
applied to the nodes at level 3 and higher, while the
non-adjacency condition can be applied to the nodes at
level 4 and higher. If the node is not eliminated by the
above two tests, the lower bounds of each of three sub-
problems are computed according to the procedures
presented in section 3. For fast elimination of nodes, the
lower bounds of three sub-problems can be calculated
in any sequence according to the characteristics of the
problem under consideration. Suppose that the sequence
of lower bound is LB1, LB2, and MSC. When the LB1 is
determined, it is summed to the associated cost of the
node and compared with the upper bound. If it is greater
than or equal to the current upper bound, the node is
fathomed (denoted by F3). If the node is still not
fathomed, the LB2 will be computed. The value of LB2
+ LB1 + associated cost of the node will be again
compared to the upper bound. If the node is still
unfathomed, the MSC will be determined. Finally, the
sum of lower bounds of three sub-problems (MSC +
LB2 +LB1) plus the associated cost of that node is
compared to the upper bound.

The remaining unfathomed nodes are called active
nodes. When a complete sequence is found (all jobs are

scheduled on the node), the node is fathomed (denoted
by F4), and its objective function value will be
compared with the current upper bound. If the current
upper bound is higher, replace the current upper bound
by the objective function value of the complete
sequence.

Optimality test

If some active nodes are still available, repeat the

iteration steps; otherwise, stop. After the algorithm is
terminated, the node in which its objective function
value is equal to the current upper bound represents the
optimal solution and its objective function value is the
optimal total costs.

7. ILLUSTRATIVE EXAMPLE

The branch and bound algorithm can be illustrated
using the following example. There are 4 jobs to be
processed on a single machine. The data of sequence-
dependent setup cost, processing time, due date, and
earliness and tardiness penalties are shown in Table 2
and 3.

Table 2. Setup cost matrix.

Table 3. Job information.

Job pi di hi wi

1 3 8 2 9

2 2 6 7 7

3 4 10 3 8

4 3 9 8 6

The priority-dispatching rule generates the

sequence of {1, 2, 4, 3} with the total cost of 89. The
local improvement procedure modifies the sequence to
be {2, 1, 4, 3} with a better total cost of 86, which is

1 2 3 4

1 0 15 33 3

2 20 0 18 28

3 35 8 0 10

4 2 14 5 0

 Branch and Bound Approach for Single-Machine Sequencing with … 109

used as an initial upper bound for the problem.
Figure 3 shows a complete network representation

of the illustrative example. In iteration 1, nodes 1, 2, 3,
and 4 are constructed, indicating that each of the four
jobs could be processed in the first order of the
sequence. The associated cost of each node is calculated
and shown on an arc leading to that node. Then, the
associated cost is compared to the upper bound. The
node will be fathomed if the associated cost is higher
than or equal to the upper bound.

In order to further eliminate these nodes, the lower
bounds of the three sub-problems are computed. Each
time the lower bound is obtained, it is summed up with

the associated cost and compared to the upper bound. If
it is greater than or equal to upper bound, the node is
fathomed. In this case, node {4} is fathomed.

Then, select job 1 as the branching node because
job 1 has the lowest objective function value among the
three nodes. Job 1 is now assigned to the first order of
the sequence. Then, branch from job 1 for jobs 2, 3, and
4, and place each of jobs 2, 3, and 4 in the second order
of the sequence. The associated cost and lower bounds
of each node are calculated. Node {1,3} has the
associated cost plus lower bounds (LB1+LB2) greater
than the upper bound. Thus it is fathomed (making it an
inactive node).

LB1=0
LB2=30
MSC=15

2
3

2
4

3
2

3
4

LB1=0
LB2=57

LB1=0
LB2=27
MSC=8

LB1=0
LB2=39

AJCij≥AJCji
(47≥0)

LB2=18
MSC=3

2
1

Level 4

Level 3

Level 2

F3

1
2

1
3

1
4

LB1=0
LB2=10
MSC=15

LB1=0
LB2=39

LB1=0
LB2=30
MSC=13

LB1=0
LB2=10
MSC=8

LB1=0
LB2=27

1
2
3

1
2
4

1
4
3

1
4
2

2
1
3

2
1
4

AJCij≥AJCji
(49≥12)
LB2=18
MSC=10

AJCij<AJCji
(19<22)

F2

AJCij≥AJCji
(11≥-7)
LB2=16

F3

AJCij≥AJCji
(29≥-16)
LB2=42

F3

AJCij≥AJCji
(22≥19)
LB2=16

F3

3
2
1

3
2
4

AJCij≥AJCji
(22≥8)

LB2=36
F3

3
2
1
4

1
2
3
4

Optimal solution

3 5 3

65 90 68 65 42 55 54

76

81
new UB

53

Four cases of fathoming criteria:
F1 = Associated cost ≥ UB
F2 = Adjacency or non-adjacency condition is

not satisfied
F3 = Associated cost + LB1 + LB2 + MSC ≥ UB
F4 = Obtain the complete sequence

F3

F1

F1 F3

F4

F3

LB1=0
LB2=6
MSC=16

0

1 2 3 4

10
28 18

54

LB1=3
LB2=0
MSC=10

LB1=0
LB2=27
MSC=13

3
1

5 5 8
55 26 44

Level 1

PDR {1,2,4,3} cost = 89
LIP {2,1,4,3} cost = 86
Upper bound = 86
New upper bound = 81

F3

Figure 3. Network representation of numerical example

110 Chananes Akjiratikarl· Pisal Yenradee

Since node {1,2} has the lowest cost, place job 2
in the second order. Branch from node {1,2} for the
remaining jobs, which are jobs 3 and 4. At level 3, the
dominance rule is applied. Since node {1,2,4} does not
satisfy the adjacency condition, the node is fathomed.
Branch from the node {1,2,3} to obtain the first
complete sequence of {1,2,3,4} with the objective
function value of 81. The obtained objective function
value is less than the current upper bound; thus, set the
new upper bound equal to the objective function value.
Fathom all nodes that have their associated costs greater
than the new upper bound. Repeat the iteration steps
until all nodes are fathomed. After the algorithm is
terminated, the optimal sequence is {3,2,1,4} with the
objective function value of 76.

8. ANALYSIS OF COMPUTATIONAL
PERFORMANCE

The proposed branch and bound algorithm is
implemented and computationally tested on a Pentium
IV computer, 1.8 GHz CPU speed, 512MB RAM. The
algorithms are coded in C language. The test problems
are randomly generated based on the parameters as
shown in Table 4. For each job, the values of pi, hi, and
wi, are the same as those in Li (1997) and Liaw (1999).
The setup costs are carefully selected to ensure that they
are not dominated by early/tardy penalties. For due date
setting, Liaw (1999) analyzed the influence of average
lateness factor and relative range of due date on

problem hardness. The results indicated that the
problems are most difficult when a lateness factor (LF)
= 0.6, and increasing the range of due date (RDD)
seems to make the problem harder. For the test
problems, LF and RDD are equal to 0.5 and 1,
respectively, which result in high problem hardness.
The look-ahead parameter (k) is equal to 3 according to
a recommendation of Liaw (1999).

The first test (Test 1) evaluates the performance of
the algorithm against the number of jobs. Six test
problems with different numbers of jobs (15, 20, 25, 30,
35, and 40 jobs) are randomly generated. Each problem
is tested by 30 randomly generated data sets. To
evaluate the performance of upper bound, lower bounds,
and dominance criteria, the second test (Test 2)
compares the performance of the algorithm with and
without implementation of these bounds and criteria for
the problem of 20 and 30 jobs with the same parameter
settings. For both tests, the program will terminate
when the problem is not solved within 3,600 seconds in
order to avoid excessive computational time. The
number of unsolved problems is reported.

The performance measures are computational time,
number of generated nodes, and number of generated
complete solutions. Table 5 and figure 4 show that
the required computational time increases exponentially
with the problem size (number of jobs). This is an
indication of an NP-hard problem. The propose
algorithm can solve

the problem having up to 40 jobs in a reasonable

Table 4. Parameter settings for the test problems.

Parameters Range of value
SCji Int U[1, 40]
pi Int U[1, 10]

di
Int U[P(1- LF - RDD/2) , P(1 – LF + RDD/2)]

where, LF = 0.5 and RDD = 1
hi Int U[1, 10]
wi Int U[1, 10]
k 3

Int U[a, b] = a set of integer numbers generated from a discrete uniform distribution within an interval [a, b]
LF = Lateness factor
RDD = Range of due date

Table 5. Computational time required by the test problems (Test1).

No. of
jobs

Avg. CPU
time (sec)

Avg. no. of
generated nodes

Avg. no. of generated
completed solutions

Total no. of
nodes

Total no. of
solutions

No. of problems
unsolved (out of 30)

15 0.413 13,838.34 67.83 3.55 * 1012 1.307 * 1012 0
20 4.48 94,351.67 161.27 6.61 * 1018 2.43 * 1018 0
25 37.67 1.17 * 106 925.34 4.21* 1025 1.55 * 1025 0
30 98.66 6.96 * 106 2,827.54 7.21 * 1032 2.65 * 1032 0
35 885.26 4.87 * 107 17,410.67 2.808 * 1040 1.03 * 1040 4
40 2847.33 2.83 * 108 89,455.37 2.21 * 1048 8.15 * 1047 10

 Branch and Bound Approach for Single-Machine Sequencing with … 111

time (2,847 seconds on the average, not including
unsolved problems). Comparing between the average
number of generated nodes and the total number of
nodes, and between the average number of generated
complete solutions and the total number of solutions, it
is obvious that the algorithm is very efficient in
fathoming the nodes.

The efficiencies of upper bound, dominance
criteria, and lower bound are summarized in Table 6.
The results indicated that the lower bound is the most
important feature of the algorithm. If the lower bound
does not exist, branch and bound algorithm cannot
efficiently solve even small sized problems. The
dominance criteria are the second most important
feature of the algorithm. The exclusion of dominance
criteria results in a considerable increase in the
computation time and the number of generated nodes
for both problem sizes. The upper bound is the least
important feature. However, for relatively large
problems (No. of jobs = 30), the effect of upper bound
is still significant.

The upper bound derived from the two-phase
heuristic procedures is the least important feature
because it is only useful at the early stage of the
computation. It is applied to obtain the upper bound

since the initialization step of the algorithm. If the
upper bound is not calculated at the initialization step,
the equivalent or better one can still be obtained after
the algorithm has found a sufficiently good incumbent
solution and has spent some computational time.
However, the good upper bound can save this amount
of computational time and allow a number of nodes to
be eliminated at the beginning of the search tree,
especially for large-sized problem.

On the other hand, the lower bound and
dominance criteria are repeatedly calculated at every
node, so they are capable of eliminating a larger number
of nodes than the upper bound. Note that the upper
bound derived from the two-phase heuristic procedures
is effective only at the early stage of the computation
while the lower bound and dominance criteria are
effective for all stages of computation. The lower bound
calculates the least cost that

will incur or the best objective value of that node if
it is branched further. When adding the lower bound to
the associated cost of the particular node, there is a
good chance that the cost of branching further will be
greater than the current upper bound and the node will
be eliminated. The dominance criteria consider only the
precedence relations of the adjacent and non-adjacent

0

500

1000

1500

2000

2500

3000

15 20 25 30 35 40 45

No. of jobs
C

P
U

 t
im

e
(s

ec
)

Figure 4. Relationship between the computational time and number of jobs.

Table 6. Comparison of efficiencies of each algorithm feature (Test 2).

Algorithm settings No. of jobs Avg. CPU
time (sec)

Avg. no. of
generated nodes

Avg. no. of
generated completed

solutions

No. of problems
unsolved (out of 30)

UB is not used 20 7.75 391,702.5 899.75 0
30 349.17 1.34 * 107 126,399.57 1

Dominance criteria are
not used

20 28.12 963,951.42 195.73 0
30 1426.18 8.27 * 107 4,974.76 3

LB is not used 20 3,012.34 1.29 * 108 8,112.25 25
30 Too long Unavailable Unavailable 30

All features are used 20 3.67 89,135.34 148.34 0
30 78.34 5.84 * 106 2,639.67 0

112 Chananes Akjiratikarl· Pisal Yenradee

jobs within the node (the scheduled jobs). They do not
consider the effect of other jobs which are still not
included in the sequence (the unscheduled jobs).
Therefore, the lower bound has a greater effect on the
performance of the algorithm than the dominance
criteria.

9. CONCLUSIONS

The network representation and branch and bound
algorithm are developed to determine a global optimal
production schedule on a single machine that minimizes
total sequence-dependent setup cost and weighted
earliness/tardiness penalties. It is assumed that the idle
time cannot be inserted into the schedule. The problem
is NP-hard, indicating that finding an optimal solution is
difficult. Efficient lower bounds for three sub-problems
are presented. The lower bounds of weighted early and
tardy sub-problems are based on the algorithm proposed
by Li (1997) whereas the lower bound of the sequence-
dependent setup sub-problem is based on the proposed
heuristic. Dominance criteria developed by Liaw (1999)
are modified in order to incorporate sequence-
dependent setup cost which is shown to be efficient in
reducing the number of nodes in the branch and bound
search tree. The two-phase heuristic procedures,
including the priority dispatching by Ow and Morton
(1989) and the modification of local improvement
procedure of Liaw (1999), are used for determining the
upper bound. The lower bounds, upper bound, and
dominance criteria developed for the branch and bound
algorithm are tested and proven effective. The
computational results indicate that the lower bound
greatly affects the performance of the branch and bound
algorithm.

Most of single-machine scheduling problems
found in literature are special cases of the problem
under consideration in this paper. The early/tardy
problems with up to 50 jobs have been optimally solved
using the branch and bound algorithm (Li, 1997; Liaw,
1999). The problem addressed in this paper is more
general and more complex since it also considers the
sequence-dependent setup cost in the objective function.
It is capable of solving problem with up to 40 jobs in
reasonable time (1 hour). Parameters used in the
experiment are set such that three cost elements (setup,
early, tardy penalties) do not dominate each other,
which makes the problem difficult to solve. It is
expected that if one cost element dominates the others,
the algorithm will be able to solve bigger problems.
Moreover, the scheduling method in this paper can
solve some special cases in the literature by only
modifying some input parameters.

For the problem investigated in this paper, it is
assumed that the idle time cannot be inserted into the

schedule. This is the case when the cost of keeping
machine idle is greater than the earliness penalties, the
capacity of machine is less than the demand, or the
algorithm is used for scheduling the bottleneck machine.
This paper also assumes that the setup cost is sequence-
dependent but the setup time is sequence-independent.
The most recent paper by Sourd (in press) considered
the problem where the idle time can be inserted and the
setup time is sequence-dependent. The computational
test has shown that the proposed branch and bound
algorithm is limited to the problem with no more than
20 jobs, which is a half of the problem size in this paper.
Since the problem introduced by Sourd (in press) is
more complex, it is limited to relatively small-sized
problems. The algorithm presented in this paper is
suitable in the situation when the idle time is not
allowed and the setup time is sequence-independent.
The application of either algorithm depends on the
characteristics of the problem being considered in order
to obtain the solution using less time and effort.

In conclusion, for the weighted earliness/tardiness
penalties with sequence-dependent setup cost problem
where the idle time is not allowed in the schedule, the
algorithm presented in this paper appears to work well
for reasonable-sized problems. For large-sized problems,
however, a heuristic approach is more practical. The
algorithm developed in this paper can be used to
provide a benchmark for the evaluation of heuristic
algorithms. It is also useful for developing a heuristic
based on the branch and bound approach. Recent
developments in simulated annealing and tabu-search
methods provide interesting approaches for finding
good heuristic solutions.

ACKNOWLEDGEMENT

This research is supported by the Royal Golden
Jubilee Ph.D. Program of Thailand Research Fund,
contract number PHD/0084/2544.

APPENDIX A. Proof of Adjacency condition.

Let c(ij) be the cost of sub-sequence {i,j} and c(ji)
be the cost of inverse sub-sequence {j,i}

There are six cases, which may occur for job i and
j in the sequence as follows:

1. Both jobs are early in both positions.
2. One job is early in both positions, but another is

early in the first position and tardy in the second
position.

3. Both jobs are early in the first position and tardy
in the second position.

4. One job is tardy in both positions, but another is
early in both positions.

5. One job is tardy in both positions, but another is

 Branch and Bound Approach for Single-Machine Sequencing with … 113

early in the first position and tardy in the second
position.

6. Both jobs are tardy in both positions

The illustrations of all cases are shown in figure 5.
The proof is similar to that in Ow and Morton(1989)
with an addition of sequence-dependent setup cost.

Case 1. Both jobs are early in both positions.

Position of jobs i and j can be interchanged

without affecting the cost of other jobs in the sequence.
If adjacency condition holds, then c(ij) ≤ c(ji).

 jyijxiij SCSCSCTSC ++= (40)

ijjijjiii TSCpptdhptdhijc +−−−+−−=)()()((41)

ijijjjjiii TSCphptdhptdhijc +−−−+−−=)()()((42)

)()()(jjjiiiijij ptdhptdhijcphTSC −−−−−−=− (43)

Similarly,

iyjixjji SCSCSCTSC ++= (44)

(1) (2)

(4)(3)

(5) (6)

di dj

y

x j i y

j x i

t

di dj

y

x j i y

j x i

t

di dj

y

x j i y

j x i

t

di dj

y

x j i y

j x i

t

di dj

y

x j i y

j x i

t

y

x j i y

j x i

t

di dj

Figure 5. Illustration of adjacency condition cases 1 - 6

114 Chananes Akjiratikarl· Pisal Yenradee

jijiiijjj TSCpptdhptdhjic +−−−+−−=)()()((45)

jijiiiijjj TSCphptdhptdhjic +−−−+−−=)()()((46)

)()()(jjjiiijiji ptdhptdhjicphTSC −−−−−−=− (47)

Since job i is early in both positions (di - t - pi ≥ pj)
thus, Ωij = pj. Similarly, job j is early in both positions
(dj - t - pj ≥ pi) thus, Ωji = pi. Substituting these values
into adjacency condition gives:

ijjjiijiijjiji TSChwppwhwppwTSC ++−≥+−+)()(
 (48)

By simplifying,

ijijjiji TSCphphTSC +−≥− (49)

Substituting (43) and (47) into (49) gives:

)()(jicijc ≤ (50)

Case 2. One job is early in both positions, but another
is early in the first position and tardy in the
second position.

ijjijjiii TSCpptdhptdhijc +−−−+−−=)()()(
(51)

ijijjjjiii TSCphptdhptdhijc +−−−+−−=)()()(
(52)

)()()(jjjiiiijij ptdhijcptdhphTSC −−−=−−+−

 (53)

and,

jiijiijjj TSCdpptwptdhjic +−+++−−=)()()(
(54)

jijiiiijjj TSCpwptdwptdhjic ++−−−−−=)()()(
(55)

)()()(jjjiiijiji ptdhjicptdwpwTSC −−−=−−−+

(56)

Since job i is early in the first position only (si < pj),
thus Ωij = si. While job j is early in both positions (sj ≥
pi), thus Ωji = pi. Substitute these values in adjacency
condition and then simplify the expression as presented
in formula (57).

ijjjiijiiijiji TSChwppwhwspwTSC ++−≥+−+)()(
 (57)

Substituting si = di – t – pi gives:

ijijijij

iiiijiji

TSCphpwpw

hwptdpwTSC

+−−≥

+−−−+))((
 (58)

By simplifying

ijiiiij

iiijiji

TSCptdhph

ptdwpwTSC

+−−+−≥

−−−+

)(

)(
 (59)

Similarly, substituting (53) and (56) into (59) gives:

)()(jicijc ≤ (60)

The same procedure is repeated for the remaining
cases of i and j.

APPENDIX B. Proof of Non-adjacency
condition.

Similar to the proof of adjacency condition, there
are also six cases which can occur for jobs i and j in the
sequence. Non-adjacency condition can be applied only
when the processing time of non-adjacent pairs of jobs
are equal. Therefore, changing the position of jobs i and
j are not affecting the cost of other jobs in the sequence.
If non-adjacency condition holds, then c(ij) ≤ c(ji).

Case 1. Both jobs are early in both positions as shown
in figure 6.

Figure 6. Illustration of non-adjacency condition case 1.

 jzwjivuiij SCSCSCSCTSC +++= (61)

ijjijjiii TSCpKptdhptdhijc +−−−−+−−=)()()((62)

u

zw v u j i

t

SCuj SCjv SCwi SCiz

 K

zv i j

 t

SCui SCiv SCwj SCjz

 K

w

di dj

di dj

 Branch and Bound Approach for Single-Machine Sequencing with … 115

ijijjjjiii TSCKphptdhptdhijc ++−−−+−−=)()()()((63)

)()()()(jjjiiiijij ptdhptdhijcKphTSC −−−−−−=+−

 (64)

and,

izwijvujji SCSCSCSCTSC +++= (65)

jiijiijjj TSCpKptdhptdhjic +−−−−+−−=)()()(
(66)

jijiiiijjj TSCKphptdhptdhjic ++−−−+−−=)()()()(
(67)

)()()()(jjjiiijiji ptdhptdhjicKphTSC −−−−−−=+−

 (68)

Since job i is early in both positions (di - t - pi ≥ pj
+ K), thus, ∆ij = pj + K. Similarly, job j is early in both
positions (dj - t - pj ≥ pi + K) thus, ∆ji = pi+ K.
Substituting these values into non-adjacency condition
gives:

ijjjiij

iijjiji

TSChwKpKpw

hwKpKpwTSC

+++−+≥

++−++

))(()(

))(()(
 (69)

This can be reduced to:

ijijjiji TSCKphKphTSC ++−≥+−)()((70)

Similarly, substituting (64) and (68) into (70) gives:

)()(jicijc ≤ (71)

The same procedure can be repeated for the
remaining cases of jobs i and j.

REFERENCES

Adul-Razaq, T.S., and Potts, C.N. (1988) Dynamic
programming state-space relaxation for single-machine
scheduling, Journal of Operation Research Society, 39,
141-152.

Allahverdi, A., Gupta, J.N.D., and Aldowaisan T. (1999) A
review of scheduling research involving setup
considerations, OMEGA The International Journal of
Management Science, 27, 219-239.

Azizoglu, M., and Webster, S. (1997) Scheduling job
families about an unrestricted common due date on a
single machine, International Journal of Production
Research, 35, 1321-1330.

Baker, K.R., and Scudder, G.D. (1990) Sequencing with
earliness and tardiness penalties: A review, Operations
Research, 38, 22-35.

Chang, P.C. (1999) A branch and bound approach for single

machine scheduling with earliness and tardiness
penalties, Computers and Mathematics with Applications,
37, 133-144.

Chen, J.Y., and Lin, S.F. (2002) Minimizing weighted
earliness and tardiness penalties in single machine
scheduling with idle time permitted, Naval Research
Logistics, 49, 760-780.

Coleman, B.J. (1992) Technical note: A simple model for
optimizing the single machine early/tardy problem with
sequence-dependent setups, Production and Operation
Management, 1, 225-228.

Driscoll, W.C., and Emmons, H. (1977) Scheduling
production on one machine with changeover costs,
AIIE Transaction , 9, 388-395.

Glassey, C.R. (1968) Minimum changeover scheduling of
several products on one machine, Operation Research ,
16, 342-352.

Hu, T.C., Kuo, Y.S., and Ruskey, F. (1987) Some optimum
algorithms for scheduling problems with changeover
costs, Operations Research, 35, 94-99.

Ibaraki, T., and Nakamura, Y. (1994) A Dynamic
programming method for single machine scheduling,
European Journal of Operation Research, 76, 72-82.

Li, G. (1997) Single machine earliness and tardiness
scheduling, European Journal of Operational Research,
96, 546-558.

Liaw, C.F. (1999) A branch and bound algorithm for the single
machine earliness and tardiness scheduling problem,
Computer & Operations Research, 26, 679-693

Mondal, S.A., and Sen, A.K. (2001) Single machine
weighted earliness-tardiness penalty problem with
commom due date. Computers and Operations
Research, 28, 649-669.

Morton, T.E., and Pentico, D.W. (1993) Heuristic
Scheduling Systems, with applications to production
systems and project management, John Wiley & Sons,
INC, 172

Ow, P.S., and Morton, T.E. (1989) The single machine
early/tardy problem, Management Science, 35, 177-191.

Potts, C.N., and Van Wassenhove, L.N. (1985) A branch and
bound algorithm for the total weighted tardiness
problem, Operations Research, 33, 363-377.

Rabadi, G., Mollaghasemi, M., and Anagnostopoulos, G.C.
(2004) A branch and bound algorithm for the
early/tardy machine scheduling problem with a
common due date and sequence-dependent setup time,
Computers & Operations Research, 31, 1727-1751.

Shaller, J. (2004) Single machine scheduling with early and
quadratic tardy penalties, Computers & Industrial
Engineering, 46, 511-532.

Sourd, F. (in press) Earliness-tardiness scheduling with setup
considerations, Computers & Operations Research.

Ventura, J.A., and Radhakrishnan, S. (2003) Single machine
scheduling with symmetric earliness and tardiness
penalties, European Journal of Operational Research,
144, 598-612.

Yano, C.A. and Kim, Y.D. (1991) Algorithms for a class of
single-machine weighted tardiness and earliness
problems, European Journal of Operational Research,
52, 167-178.

