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We consider the sensitivity of average inventory cost rate when true values of the parameters in the EOQ

model are unknown over known ranges. In particular, in the case that the valid range on the true economic

lot size are known, we provide a formula for estimating the lot size under minimax criterion. Moreover, to

estimate the valid range, we apply the propagation of errors technique. Then, we present a scheme to find

a (valid) lot size, based on the estimated range of the true lot size from the propagation of errors technique.
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1. Introduction

In the basic Economic Order Quantity (EOQ) model,
the optimal order quantity or lot size is determined
by the three parameters of average demand rate,
order (setup) cost, and inventory holding cost. When
we know the exact values of the parameters, we can
get the true(and optimal) lot size using the
well-known EOQ formula. The values of the
parameters are mainly measured in manufacturing or
accounting departments. However, they often do not
have the precise values but instead ranges for the
estimated values of the parameters: the ranges to
which they thought the true values might belong.
Hence, in practice we unavoidably have additional
costs from the estimation errors, i.e., the difference

between the average cost rate with precise values and
the average cost rate with values of some errors.

In this situation, one methodology for making a
decision on order quantity is to deploy the minimax
criterion, likely to be used by risk-averse managers
who desire to select alternatives that avoid the worst
possible outcome. Many studies have been done for
the sensitivity analysis of average cost rate to errors
in parameter estimation (Groff and Muth, 1972,
Lowe and Schwarz, 1983). In particular, Lowe and
Schwarz provided an objective function to measure
the effect of errors in parameter estimation: the ratio
of the average cost rate with imprecise values to the
average cost rate with true values, denoted by
R(Q) . Then, the policy for decision making is to
determine the lot size which minimizes the
maximum of R(Q).
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However, it is questionable whether the lot size
generated from the policy is within the valid range of
the true size. Given a range to which the true
optimal lot size belongs, it is trivial to check any
suggested lot size, including the lot size from the
policy, is valid or not. In case that no valid range is
provided, we need to estimate the range of lot size
using the estimated parameters of the EOQ model.

In this paper, we modify the policy to satisfy the
validity constraint on lot sizes. To this end, a new
formula for lot sizing has been derived to deal with
the case when we are given a valid range of the true
size. Moreover, in order to provide an estimate of the
valid range, we deploy the propagation of errors
technique. Illustrative examples will be presented to
show the applicability of the technique. Finally, we
present the scheme that finds a (valid) lot size, based
on the estimated range of the true lot size from the
propagation of errors technique.

2. Sensitivity of the EOQ Model

We are given ranges of estimations for the parame-
ters, demand rate D, setup cost S, and inventory
holding cost / as follows:

D < D < D
s <85 <8 (1)
h < h < h

When one requires the amount of Q in each time
of order, the average cost rate, ACR(Q), is

ACR(Q)=(SD/Q) +(h0 /2).

The minimum of the average cost rate is attained

at the lot size of Q" =~2SD /h with the cost rate
ACR(Q") =~25Dh . (2)

If one uses @ instead of @ due to estimation errors,
additional costs incurs. To measure how much cost is
increased, we use the ratio of the average cost ratio

for O to the average cost ratio for O :

_ ACR(Q)

RO)=4 20

Let K be the set of triples (S,D,h)which satisfy

the constraint (1). Though each parameter can have
any value in its range, but all the triples in K might
not be valid because of the interactions between the
parameters. In general, there are two kinds of
interactions between parameters: positive interaction
that the value of one parameter is likely to increase
as the value of the other parameter increases, and
negative interaction that the value of one parameter
has a tendancy to decrease as the value of the other
parameter increases. Suppose that the parameter A
has negative interaction against with the other
parameters S and D. In this case, it is likely in real
production that the three values S,D, h  might
appear at the same time with high probability

whereas the values of S, D,/ might not coexist.

Let @S, D,h) be the joint probability distribution
function for the triples (S, D, )0 K . Then, for the
aboue supposition on the interactions between the
parameters, the probability of (S,D,h) will be
high, while the probability of S, D, %) is zero, i.ec.,
@(S,D,h)=0. When @S,D,h)=0 for some
(S,D,h)0K , we say that the triple(S, D, %) is not
valid. Then, we can fromally define the valid set K
as follows:

K ={(S,D,h):(S,D,h) is valid, (S,D,h)0K} .
Note that the triple(S,D,h) 0K is not valid if
(S,D,h)=K.

When the given parameters are unknown, it is
natural to choose the alternative that minimizes the
worst-case outcome. This is called mznimax criterion.

In this criterion, we find the O satisfying:

min max R(Q) (3)

0>0 (S8.,D,h)0K

As it is not easy to get the set K in practice, the set
K was used instead of K in the Lowe and Schwarz’s
model.

2.1 Lowe and Schwarz’s Model
Lowe and Schwarz(1983) considered the problem

min max R(Q) 4)

0>0 (S,D,h)OK

and showed that the lot size minimizing the maxi-
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mum risk is € = (4 SDSD/ (hﬁ)) . However, we
note that the order quantity ) may not be valid, that
is, no (S, D,h) 0K may exist with V28D /h =0".

The following example shows some 0'is not valid.

Example 1.

Let H"be the half space which includes all the
points above or on the hyperplane crossing the three

points (S, D,h), (S,D,h), (S,D,h) (the point
(S,D,h) belongs to H*). Then, the true set K is
defined as K =K n H*. Let V be the volume of

the hexahedron K. Then, the volume of K is 5/6
V. The variables (S,D,h)are uniformly

distributed with joint distribution function @Dl

times

1
AS,D,h) =15V /6’
0, otherwise.

if (S,D,h) 0K

When the ranges on the parameters, §, D, and j
are [60,90], [100000,200000] and [7,9], respec-

tively, H™* is the set

H™ ={(S,D,k):200000S +60D +3000000/ =45000000}

In this case, the lot size satisfying (4) is 0" =1,618.
As the lot size © is a function of §, D and 4, ie.,
0=+2SD/h, we can get possible values (true
region) of @ from the true set K. Hence, we
consider the minimum and maximum value of O in
the set K. Using an optimization tool MATLAB
(The MathWorks, Inc. (2000)), we can get the
minimum and maximum values, 1,630 and 2,267,

respectively. We note here that the lot size Q is less
than the minimum value. Hence, this lot size is not

valid.

2.2 The Extended Model

Suppose that we are given a valid range for the
true lot size,

0<0<0 ()

as well as the ranges for the parameters of (1). Since the
range (5) is valid, for each @, @ <O <0 | there exists
at least one triple (S, D,h) 0K such that ~/2SD / h =

O . We define another set of triples K as K Z{(S>D,h)f
Q=N2SD/h <0, (S’D’h)DE}. In order to accom-

modate the validity information (5), the problem (4)
is modified to

0>0 (S,D,h)0K

min max R(Q) ©)

Note that ACR(Q) = (SD/Q)+(h0Q/2), which
can be written as

5y 5o L( L[5, o 1 [
ACR()) = 2SDh{QA[\/E 5 J+Q[2ﬁ SDH.
Since ACR(Q") =~2SDh by (2), from the defini-
tion of R(Q) , we have

A 1{ 1 [SD A1 h
R = = —,|— |+ - | —
@ {Q[ﬁ h] Q(zﬁ SDH
Then, the problem is equivalent to

min max

1{ 1 [SD +0 1 h
0>0 (8,D,h)K 5 ﬁ 7 Q m S_D (7)

We let ¥ =SD/h with feasible region
y =0°/2<sy<Q?/22 y 8)

Then, we rewrite the problem (7) so that we con-

A

sider only the variables O and V:
min max{2—1/2y1/2Q—1 + 2—3/2y—1/2Q} ©)
0>0 ysysy .

From the same arguments that Lowe and Schwarz
(1983) used, we can easily show that the optimal
solution to (9) is Oy = (4yy )" Thus, from this toge-
ther with (8), we have QR =y9 O . In the following

proposition, the final result is summarized.

Proposition 1.
The optimal solution to problem (6) is

0, =20
Then, the question remaining is how to get the

estimated (valid) range of @ as in (5), which is the
topic of the next section.
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3. Error Analysis

Consider a function Y = f(X;,...,X,) where each

variable *; is defined for interval (X;» X;) (in the
EOQ model, /(O is f(S,D,h)=~28D/h).

Then, we would like to get the valid range (¥ ¥) of
the decision variable V- Since it is often the case that

each mid value *; = (x; * ¥;)/2 is thought of as the
most likely one, we set the most likely value of V as
y=f(x,0x,) Let By=Y -y =y ~JY> which is
called the composite error from the estimation errors

of the variables®;. To estimate the composite error,
two methods of the total differential and propagation
of errors are often used. The composite error Ay in

total differential method is defined as
n af
Ay =) —Ax,

In this equality, however, it is uncertain whether
the effect of each individual error is to increase or
decrease the combined error, which is a matter of
randomness (Yoon, 1990). Hence, the range from
the total differential method is so wide that it does
not give us useful information.

In the propagation of errors technique, the error of
YVis not understood in terms of the approximate

(10)

change to the disturbances of the variables X; as in
(10), but in terms of statistical deviation. From the
statistical analyses in (Pugh and Winslow, 1996), for
the standard deviation of V , we have

o (Of N (OF Yo ... (0Of Y
v [azl "2j +[ax2 “2] * +[axn ”") ’

where I, is the standard deviation of variable ¥;.

When we replace 9,and 9;'s by & and A%;'s we
have for the composite error

2
)= {;i ij} : (1
i=1 X
Now, let’s see how to apply the propagation of
errors technique for the EOQ model, where the
function f(S,D,h)=~25D /h . In the EOQ model,
for the corresponding composite error of (11), we
have

] [5G0 [She]
N oD 0h

2 2
[D As |+ N AD |+ Slz N
2Sh 2Dh 2h

In Example 2, we take a look at how to compute
the range of a lot size.

AQ?

T (12)

Example 2. Deployment of Propagation of
Errors Technique

A materials management department tries to find
a lot size for a new part. It is best estimated that
yearly demand is D=(10,000+1,000), ordering cost
§=8$(100+£10) | and inventory carrying cost is
h =8$(10%1)  Then, by (12), A0 =39 . We estimate
O as £(100,10000,10)=447. Thus, we obtain the

range of O as (O £AQ) = (447 £39) or [408, 486].

The next example shows how well the propagation
of errors technique works as opposed to actual
statistics.

Example 3. Comparison of Propagation of Errors
Technique with Actual Statistics
The yearly demand is fixed with value of 10,000
and the other two estimates are given as follows:

S : 8350, S400, S450 with equal probabilities and
therefdre a standard deviation of 40.8

F : 811, S13, S15 with equal probabilities and there-
fore 4 standard deviation of 1.6

Each of the nine joint probabilities from the two
distributions has equal probability of 1/9. Thus, we
have the following lot sizes with equal probabilities:

2763 2542 2366
2954 2717 2530
3133 2882 2683

The actual mean and standard deviation of these
values are compared with those obtained by
propagation errors:

Actual Statistic
H=2,730
g=223

Propagation of Errors
0=2,717
AQ =269
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As the comparison shows, estimations of propaga-
tion of errors technique is almost close to the actual
statistics.

4. EOQ Decision with Propagation of
Errors

Since the estimated range from the propagations of
errors technique is somewhat quite accurate with the
actual range, it is worthwhile to deploy the result of
propagations of errors when making decisions. Thus,
under minimax criterion, our scheme for lot sizing
can be described as follows:

(1) Estimate the range on @, 9<0< Q, using
the propagation of errors technique

(2) Calculate the lot size QR using the formula in
Proposition 1.

To compare the result of our scheme (Or) with

that of Lowe and Schwarz’s model (QA* ), we provide
the following example.

Example 4. Comparison of O and O
Consider Example 1 again with ten various
instances of ranges of §, D and h. Recall that each

Table 1. Comparison of 0y with 0
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triple (8§, D, h) €K has probability greater than zero
while each (S, D, & h) K has probability zero, where
K=KnH" and H" is the set of points above or
on the hyperplane defined by the three triples

(5.D.h), (S,D,h), (S.D.h) . As the lot size O is
a function of S, D and A, i.e., Q= V2SD/h  we can
get possible values (true range) of € from the true
set K. In Table 1, (Q’Q_ ) is the true range found by
an optimization tool MATLAB(The MathWorks,

Inc. (2000)) and (@-9Q) is the estimated range by
the propagation of errors technique. For each

. . A\
instance, we compared the lot size O from Lowe &

Ak
Schwarz’s model with the lot size @ from our
scheme based on the estimated valid range by
propagation of errors.

Let’s look at Q*, Oy and the trure range (o3 0) .
Note that all the ten O; belong to their correspon-
ding (Q’Q), while four of O are not in the range
o, 0) . In other words, we see that all the ten Q; ’S

are valid while the four of 0" are invalid.
Another interesting point would be the compari-

son of expected total costs for the two lot sizes, O

and Q. In general, given a lot size @, the average
total cost can be computed as follows:

S D h . . 0 0 . N
No. s s1ololzl7 O |E[acrd)] 015 o 5 O, |E[4crO))]
L[ 200 | 300 | 1100 [ 2000 | 17 | 33 | 175 | 3118 | 156 | 266 | 134 | 218 | 171 | 3120
2| 10 | 90 | 100 |10000| 4 9 | 100 | 2420 | 149 | 671 | 94 | 463 | 209 | 1524
3| 10 | 90 | 100 |10000| 1 9 | 141 | 1814 | 149 | 1342 | 80 | 556 | 211 | 1426
4| 320 | 562 |20000 | 40000 | 70 | 100 | 535 | 33759 | 506 | 801 | 428 | 688 | 543 | 33721
S| 30 | 120 |70000[100000[ 10 | 20 | 843 | 10286 | 548 | 1549 | 595 | 1249 | 862 | 10255
6 | 3000 | 5000 | 20000 | 40000 | 120 | 300 | 1075 | 161297 | 889 | 1414 | 749 | 1389 | 1020 | 161662
7| 60 | 90 |100000|200000 7 9 | 1618 | 9435 | 1632 | 2267 | 1335 | 2019 | 1642 | 9426
8| 2 | 400 | 10 |80000| 1 2 | 189 | 38325 | 400 | 8000 | 907 | 5641 | 2262 | 4372
9 | 5000 | 8000 |100000{200000( 200 | 400 | 2515 | 545611 | 2233 | 3162 | 1880 | 3219 | 2460 | 546222
10 | 160 | 230 |100000{200000| 7 9 [ 2615 | 15173 | 2667 | 3625 | 2165 | 3243 | 2650 | 15161
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E[ACR(Q)]=/// o ﬁ(w/g +hQ/2)dSdD dh

For the lot sizes O and @k, we computed their
expected total cost as shown in the Table 1.

Although the expected total cost based on G is not
always smaller than that on O , we observe that the
expected total cost based on valid @x is no worse

than that on invalid Q . Furthermore, the large
difference between the expected total costs based on

QR and on O'in the 8th instance of Table 1
indicates that our scheme might often be quite
better than the Lowe and Schwarz’s model.

5. Conclusions

In the EOQ model with unknown values of demand
rate, setup and carrying costs but instead with
known ranges of them, we took sensitivity analysis
into consideration. In extending the Lowe and
Schwarz’s model, under the minimax criteria, we
derived new formula for generating lot size in case
that we are given a valid range on the true lot size.
To estimate the valid range, the propagation of
errors technique has been used and its applicability
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was tested by examples. Finally, we suggested the
scheme for lot sizing that first estimates the valid
range using propagation of errors technique and then
calculates the lot size from the new formula.
Experiments showed that the scheme is more likely
to generate valid lot sizes with small expected total
cost than the Lowe and Schwarz’s model.
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