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1. Introduction

In the basic Economic Order Quantity (EOQ) model, 
the optimal order quantity or lot size is determined 
by the three parameters of average demand rate, 
order (setup) cost, and inventory holding cost. When 
we know the exact values of the parameters, we can 
get the true(and optimal) lot size using the 
well-known EOQ formula. The values of the 
parameters are mainly measured in manufacturing or 
accounting departments. However, they often do not 
have the precise values but instead ranges for the 
estimated values of the parameters: the ranges to 
which they thought the true values might belong. 
Hence, in practice we unavoidably have additional 
costs from the estimation errors, i.e., the difference 

between the average cost rate with precise values and 
the average cost rate with values of some errors.
In this situation, one methodology for making a 
decision on order quantity is to deploy the minimax 
criterion, likely to be used by risk-averse managers 
who desire to select alternatives that avoid the worst 
possible outcome. Many studies have been done for 
the sensitivity analysis of average cost rate to errors 
in parameter estimation (Groff and Muth, 1972, 
Lowe and Schwarz, 1983). In particular, Lowe and 
Schwarz provided an objective function to measure 
the effect of errors in parameter estimation: the ratio 
of the average cost rate with imprecise values to the 
average cost rate with true values, denoted by  

( )R Q . Then, the policy for decision making is to 
determine the lot size which minimizes the 
maximum of ( )R Q .
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However, it is questionable whether the lot size 
generated from the policy is within the valid range of 
the true size. Given a range to which the true 
optimal lot size belongs, it is trivial to check any 
suggested lot size, including the lot size from the 
policy, is valid or not. In case that no valid range is 
provided, we need to estimate the range of lot size 
using the estimated parameters of the EOQ model.
In this paper, we modify the policy to satisfy the 
validity constraint on lot sizes. To this end, a new 
formula for lot sizing has been derived to deal with 
the case when we are given a valid range of the true 
size. Moreover, in order to provide an estimate of the 
valid range, we deploy the propagation of errors 
technique. Illustrative examples will be presented to 
show the applicability of the technique. Finally, we 
present the scheme that finds a (valid) lot size, based 
on the estimated range of the true lot size from the 
propagation of errors technique.

2. Sensitivity of the EOQ Model

We are given ranges of estimations for the parame- 
ters, demand rate D , setup cost S , and inventory 
holding cost h  as follows:

D D D
S S S
h h h

≤ ≤
≤ ≤
≤ ≤

(1)

When one requires the amount of Q in each time 
of order, the average cost rate, ( ),ACR Q  is

( ) ( / ) ( / 2).ACR Q SD Q hQ= +

The minimum of the average cost rate is attained 

at the lot size of 
* 2 /Q SD h=  with the cost rate

*( ) 2ACR Q SDh= . (2)

If one uses Q̂ instead of Q due to estimation errors, 
additional costs incurs. To measure how much cost is 
increased, we use the ratio of the average cost ratio 

for Q̂ to the average cost ratio for *Q :

*

ˆ( )ˆ( )
( )

ACR QR Q
ACR Q

=
.

Let K  be the set of triples ( , , )S D h which satisfy 

the constraint (1). Though each parameter can have 
any value in its range, but all the triples in K  might 
not be valid because of the interactions between the 
parameters. In general, there are two kinds of 
interactions between parameters: positive interaction 
that the value of one parameter is likely to increase 
as the value of the other parameter increases, and 
negative interaction that the value of one parameter 
has a tendancy to decrease as the value of the other 
parameter increases. Suppose that the parameter h  
has negative interaction against with the other 
parameters S  and D . In this case, it is likely in real 
production that the three values , ,S D h  might 
appear at the same time with high probability 

whereas the values of , ,S D h  might not coexist. 

Let ( , , )S D hφ  be the joint probability distribution 

function for the triples ( , , )S D h K∈ . Then, for the 
aboue supposition on the interactions between the 

parameters, the probability of ( , , )S D h  will be 
high, while the probability of ( , , )S D hφ  is zero, i.e., 

( , , ) 0S D hφ = . When ( , , ) 0S D hφ =  for some 

( , , )S D h K∈ , we say that the triple ( , , )S D h  is not 
valid. Then, we can fromally define the valid set K  
as follows:

{( , , ) : ( , , ) is valid,  ( , , ) }K S D h S D h S D h K= ∈ .

Note that the triple ( , , )S D h K∈ is not valid if 

( , , )S D h    K.

When the given parameters are unknown, it is 
natural to choose the alternative that minimizes the 
worst-case outcome. This is called minimax criterion. 

In this criterion, we find the Q̂ satisfying:

ˆ ( , , )0
ˆmin max ( )

S D h KQ
R Q

∈>
(3)

As it is not easy to get the set K in practice, the set 
K was used instead of K in the Lowe and Schwarz’s 
model.

2.1 Lowe and Schwarz’s Model

Lowe and Schwarz(1983) considered the problem

ˆ ( , , )0
ˆmin max ( )

S D h KQ
R Q

∈>
(4)

and showed that the lot size minimizing the maxi- 
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mum risk is ( )( )1/ 4*ˆ 4 /Q SD SD hh= . However, we 

note that the order quantity 
*Q̂ may not be valid, that 

is, no ˆˆ ˆ( , , )S D h K∈ may exist with *ˆˆ ˆˆ2 /SD h Q= . 

The following example shows some 
*Q̂ is not valid.

Example 1.

Let H + be the half space which includes all the 
points above or on the hyperplane crossing the three 

points ( , , ), ( , , ), ( , , )S D h S D h S D h  (the point 
( , , )S D h  belongs to H + ). Then, the true set K  is 
defined as K K H += ∩ . Let V  be the volume of 
the hexahedron .K  Then, the volume of K  is 5/6 
times V . The variables ( , , )S D h are uniformly 
distributed with joint distribution function ( )φ ⋅ :

1 , if ( , , )
( , , ) 5 / 6

0, otherwise.

S D h K
S D h Vφ

 ∈= 


When the ranges on the parameters, S , D , and h  
are [60,90], [100000, 200000]  and [7,9] , respec- 
tively, H +  is the set  

{( , , ) : 200000 60 3000000 45000000}H S D h S D h+ = + + ≥ .

In this case, the lot size satisfying (4) is 
*ˆ 1, 618Q = . 

As the lot size Q  is a function of S , D  and h , i.e., 
2 /Q SD h= , we can get possible values (true 

region) of Q  from the true set K . Hence, we 
consider the minimum and maximum value of Q  in 
the set K . Using an optimization tool MATLAB 
(The MathWorks, Inc. (2000)), we can get the 
minimum and maximum values, 1,630 and 2,267, 

respectively. We note here that the lot size 
*Q̂ is less 

than the minimum value. Hence, this lot size is not 
valid.

2.2 The Extended Model

Suppose that we are given a valid range for the 
true lot size,

Q Q Q≤ ≤ , (5)

as well as the ranges for the parameters of (1). Since the 

range (5) is valid, for each ,Q Q Q Q≤ ≤ , there exists 

at least one triple ( , , )S D h K∈ such that 2 /SD h =

Q . We define another set of triples K% as { ( , , ) :K S D h=%  

}2 / , ( , , )Q SD h Q S D h K≤ ≤ ∈ . In order to accom- 
modate the validity information (5), the problem (4) 
is modified to

ˆ ( , , )0
ˆmin max ( )

S D h KQ
R Q

∈> % . (6)

Note that ˆ ˆ ˆ( ) ( / ) ( / 2)ACR Q SD Q hQ= + , which 
can be written as

1 1 1ˆ ˆ( ) 2 ˆ 2 2 2
SD hACR Q SDh Q
h SDQ

    
= +             .

Since 
*( ) 2ACR Q SDh=  by (2), from the defini- 

tion of ˆ( )R Q , we have

1 1 1ˆ ˆ( ) ˆ 2 2 2
SD hR Q Q
h SDQ

    
= +            

Then, the problem  is equivalent to 

ˆ ( , , )0

1 1 1ˆmin max ˆ 2 2 2S D h KQ

SD hQ
h SDQ∈>

      +               
%

 
(7)

We let /y SD h=  with feasible region

2 2/ 2 / 2y Q y Q y≡ ≤ ≤ ≡ . (8)

Then, we rewrite the problem (7) so that we con- 

sider only the variables Q̂  and y :

{ }1/ 2 1/ 2 1 3/ 2 1/ 2
ˆ 0

ˆ ˆmin max 2 2
y y yQ

y Q y Q− − − −

≤ ≤>
+

. (9)

From the same arguments that Lowe and Schwarz 
(1983) used, we can easily show that the optimal 

solution to (9) is 
*ˆ
RQ =

1/ 4(4 ) .yy  Thus, from this toge- 

ther with (8), we have 
*ˆ
RQ Q Q= . In the following 

proposition, the final result is summarized.

Proposition 1. 
The optimal solution to problem  (6) is

*ˆ
RQ QQ= .

Then, the question remaining is how to get the 

estimated (valid) range of Q  as in (5), which is the 
topic of the next section.
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3. Error Analysis

Consider a function 1( , , )ny f x x= K where each 

variable jx  is defined for interval ( , )j jx x  (in the 

EOQ model, ( )f ⋅  is ( , , ) 2 /f S D h SD h= ). 

Then, we would like to get the valid range ( , )y y  of 
the decision variable .y  Since it is often the case that 
each mid value ( ) / 2j j jx x x= + is thought of as the 
most likely one, we set the most likely value of y  as 

1( , , ).ny f x x= K  Let ,y y y y y∆ = − = −  which is 
called the composite error from the estimation errors 

of the variables jx . To estimate the composite error, 
two methods of the total differential and propagation 
of errors are often used. The composite error y∆  in 
total differential method is defined as 

1

n

j
j j

fy x
x=

∂∆ = ∆
∂∑ (10)

In this equality, however, it is uncertain whether 
the effect of each individual error is to increase or 
decrease the combined error, which is a matter of 
randomness (Yoon, 1990). Hence, the range from 
the total differential method is so wide that it does 
not give us useful information.
In the propagation of errors technique, the error of 
y is not understood in terms of the approximate 
change to the disturbances of the variables jx  as in 
(10), but in terms of statistical deviation. From the 
statistical analyses in (Pugh and Winslow, 1996), for 
the standard deviation of y , we have

σ2y =








∂f
∂x1

σ2
2

+ 







∂f
∂x2

σ2
2

+ + 







∂f
∂xn

σn

2

,

where jσ  is the standard deviation of variable jx . 

When we replace yσ and jσ 's by y∆  and jx∆ 's, we 
have for the composite error 

2

2

1
( ) .

n

j
i j

fy x
x=

 ∂∆ = ∆  ∂ 
∑ (11)

Now, let’s see how to apply the propagation of 
errors technique for the EOQ model, where the 

function ( , , ) 2 /f S D h SD h= . In the EOQ model, 
for the corresponding composite error of (11), we 
have

2 2 2
2

2 2 2

32 2 2

Q Q QQ S D h
S D h

D S SDS D h
Sh Dh h

∂ ∂ ∂     ∆ = ∆ + ∆ + ∆     ∂ ∂ ∂     

     
= ∆ + ∆ + ∆     

          

(12)

In Example 2, we take a look at how to compute 
the range of a lot size.

Example 2.  Deployment of Propagation of 
         Errors Technique

A materials management department tries to find 
a lot size for a new part. It is best estimated that 
yearly demand is D=(10,000±1,000), ordering cost 

$(100 10)S = ± , and inventory carrying cost is 
$(10 1)h = ± . Then, by (12), 39Q∆ = . We estimate 

Q  as f (100,10000,10)=447. Thus, we obtain the 
range of Q  as ( ) (447 39)Q Q± ∆ = ±  or [408, 486].
The next example shows how well the propagation 
of errors technique works as opposed to actual 
statistics.

Example 3. Comparison of Propagation of Errors 
       Technique with Actual Statistics

The yearly demand is fixed with value of 10,000 
and the other two estimates are given as follows:

S : S350, S400, S450 with equal probabilities and 
therefore a standard deviation of 40.8

F : S11, S13, S15 with equal probabilities and there- 
fore a standard deviation of 1.6

Each of the nine joint probabilities from the two 
distributions has equal probability of 1/9. Thus, we 
have the following lot sizes with equal probabilities:

The actual mean and standard deviation of these 
values are compared with those obtained by 
propagation errors:

Actual Statistic Propagation of Errors
2,730 2,717
223 269

Q
Q

µ
σ
= =
= ∆ =

2763 2542 2366

2954 2717 2530

3133 2882 2683
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As the comparison shows, estimations of propaga- 
tion of errors technique is almost close to the actual 
statistics.

4. EOQ Decision with Propagation of 
     Errors

Since the estimated range from the propagations of 
errors technique is somewhat quite accurate with the 
actual range, it is worthwhile to deploy the result of 
propagations of errors when making decisions. Thus, 
under minimax criterion, our scheme for lot sizing 
can be described as follows:

(1) Estimate the range on Q , Q Q Q≤ ≤ , using 
the propagation of errors technique

(2) Calculate the lot size 
*ˆ
RQ  using the formula in 

Proposition 1.

To compare the result of our scheme (
*ˆ
RQ ) with 

that of Lowe and Schwarz’s model (
*Q̂ ), we provide 

the following example.

Example 4.  Comparison of 
*ˆ
RQ  and *Q̂

Consider Example 1 again with ten various 
instances of ranges of S, D and h. Recall that each 

triple (S, D, h) ∈K has probability greater than zero 
while each (S, D, h) K has probability zero, where 
K K H += ∩  and H +  is the set of points above or 
on the hyperplane defined by the three triples 
( , , ), ( , , ), ( , , )S D h S D h S D h . As the lot size Q  is 
a function of S, D and h, i.e., 2 /Q SD h= , we can 

get possible values (true range) of Q  from the true 
set K . In Table 1, ( , )Q Q is the true range found by 
an optimization tool MATLAB(The MathWorks, 

Inc. (2000)) and 
ˆ ˆ( , )Q Q  is the estimated range by 

the propagation of errors technique. For each 

instance, we compared the lot size 
*Q̂ from Lowe & 

Schwarz’s model with the lot size 
*ˆ
RQ  from our 

scheme based on the estimated valid range by 
propagation of errors. 

Let’s look at 
*Q̂ , *ˆ

RQ  and the trure range ( , )Q Q . 
Note that all the ten 

*ˆ
RQ  belong to their correspon- 

ding ( , )Q Q , while four of *Q̂ are not in the range 
( , )Q Q . In other words, we see that all the ten 

*ˆ
RQ ’s 

are valid while the four of 
*Q̂ are invalid. 

Another interesting point would be the compari- 

son of expected total costs for the two lot sizes, 
*Q̂  

and 
*ˆ
RQ . In general, given a lot size Q , the average 

total cost can be computed as follows:

Table 1.  Comparison of 
*ˆ
RQ  with *Q̂

No.
S D h

*Q̂ *ˆ( )E ACR Q 
 

Q Q̂
*ˆ
RQ

*ˆ( )RE ACR Q 
 S S D D h h Q Q Q̂ Q̂

1 200 300 1100 2000 17 33 175 3118 156 266 134 218 171 3120 

2 10 90 100 10000 4 9 100 2420 149 671 94 463 209 1524 

3 10 90 100 10000 1 9 141 1814 149 1342 80 556 211 1426 

4 320 562 20000 40000 70 100 535 33759 506 801 428 688 543 33721 

5 30 120 70000 100000 10 20 843 10286 548 1549 595 1249 862 10255 

6 3000 5000 20000 40000 120 300 1075 161297 889 1414 749 1389 1020 161662 

7 60 90 100000 200000 7 9 1618 9435 1632 2267 1335 2019 1642 9426 

8 2 400 10 80000 1 2 189 38325 400 8000 907 5641 2262 4372 

9 5000 8000 100000 200000 200 400 2515 545611 2233 3162 1880 3219 2460 546222 

10 160 230 100000 200000 7 9 2615 15173 2667 3625 2165 3243 2650 15161 
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( )
( , , )

1[ ( )] /  + / 2
5 / 6S D h K

E ACR Q SD Q hQ dS dD dh
VÎ

= 窒 ٛ

For the lot sizes 
*Q̂  and 

*ˆ
RQ , we computed their 

expected total cost as shown in the Table 1. 

Although the expected total cost based on 
*ˆ
RQ  is not 

always smaller than that on 
*Q̂ , we observe that the 

expected total cost based on valid 
*ˆ
RQ  is no worse 

than that on invalid 
*Q̂ . Furthermore, the large 

difference between the expected total costs based on 
*ˆ
RQ  and on *Q̂ in the 8th instance of Table 1 
indicates that our scheme might often be quite 
better than the Lowe and Schwarz’s model.

5. Conclusions

In the EOQ model with unknown values of demand 
rate, setup and carrying costs but instead with 
known ranges of them, we took sensitivity analysis 
into consideration. In extending the Lowe and 
Schwarz’s model, under the minimax criteria, we 
derived new formula for generating lot size in case 
that we are given a valid range on the true lot size. 
To estimate the valid range, the propagation of 
errors technique has been used and its applicability 

was tested by examples. Finally, we suggested the 
scheme for lot sizing that first estimates the valid 
range using propagation of errors technique and then 
calculates the lot size from the new formula. 
Experiments showed that the scheme is more likely 
to generate valid lot sizes with small expected total 
cost than the Lowe and Schwarz’s model.
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