
IE Interfaces

Vol. 17, No. 3, pp. 330-337,  September 2004.

A Meta-Model for the Storage of XML Schema using 
Model-Mapping Approach

Hoontae Kim
1†
․Taesoo Lim

2
․Keunhee Hong

3
․Suk-Ho Kang

4

1Dept. of Industrial and Systems Engineering, Daejin University, Pocheon, 487-711
2LG Electronics PRC, Pyongtaek, 451-713

3OpenTide Korea, Seoul, 135-845
4Dept. of Industrial Engineering, Seoul National University, Seoul, 151-742

모델 매핑 접근법을 이용한 XML 스키마 저장 

메타모델에 대한 연구

김훈태1․임태수2․홍근희3․강석호4

1
대진대학교 산업시스템공학과 / 

2
LG 생산기술원 / 

3
오픈타이드 코리아 / 

4
서울대학교 산업공학과

Since XML (eXtensible Markup Language) was highlighted as an information interchange format, there is 
an increasing demand for incorporating XML with databases. Most of the approaches are focused on RDB 
(Relational Databases) because of legacy systems. But these approaches depend on the database system. 
Countless researches are being focused on DTD (Document Type Definition). However XML Schema is 
more comprehensive and efficient in many perspectives.
     We propose a meta-model for XML Schema that is independent of the database. There are three 
processes to build our meta-model: DOM (Document Object Model) tree analysis, object modeling and 
storing object into a fixed DB schema using model mapping approach. We propose four mapping rules for 
object modeling, which conform to the ODMG (Object Data Management Group) 3.0 standard. We 
expect that the model will be especially useful in building XML-based e-business applications.

Keyword: XML Schema, meta-model, model mapping approach, DOM tree, object modeling 

This work was supported by grant No.R01-2002-000-00155-0 from the Basic Research Program of the Korea Science and Engineering Foundation.
†Corresponding author : Hoontae Kim, Dept of Industrial and Systems Engineering, Daejin University, San 11-1, Sundandong, Pocheon, Gyeonggi, 

Korea, 487-711, Fax : 82-31-539-2000, E-mail: hoontae@daejin.ac.kr
Received August 2003, accepted July 2004 after 1 revision.

1. Introduction

Much business information has been generated on 
the web and companies have recognized a necessity 
for storing useful information created from business 
transactions. Since XML(eXtensible Markup Lan- 
guage) was highlighted as an information interchange 

format(IIF), much information has been transformed 
into XML documents. Then it was transferred bet- 
ween businesses and stored into a database. As a 
result, companies have been requesting the incor- 
poration of XML into their databases(Bourret 2003). 
Those works are classified into a Relational mapping 
and an Object-Oriented mapping according to the 
type of database. RDB is preferred because it is 



A Meta-Model for the Storage of XML Schema using Model-Mapping Approach 331

commonly used because a lot of advanced RDB 
techniques can be applied(Bertino and Catania, 2001; 
Florescu and Kossmann, 1999; Shanmugasundaram 
et al., 1999; Yoshikawa et al., 2001), whereas OODB 
is more proper for processing the complex data 
structure of XML(Christophides et al., 1994; Chung 
et al., 2001; Goldman et al., 1999; Lin et al., 2000). 
However, these previous approaches are limited to a 
specific database type. It is also the fact that most of 
those works are focused on XML instance and just 
some for DTD (Document Type Definition). 
However it is expected that XML Schema will 
substitute for DTD because of its richer resource sets 
for powerful information interchange as a document 
meta-data(Roy and Ramanujan, 2001).
This paper suggests a database-independent 
meta-model to store XML Schema document using 
DOM (Document Object Model) tree analysis, 
object modeling and model-mapping approach. 
Model-mapping approach uses a fixed DB schema 
so that it stores and easily updates meta-data of 
dynamic and structurally variant documents.
This paper explains related works and termi- 
nologies in chapter 2, suggests modeling proce- 
dures in chapter 3, explains each step of the pro- 
cess in chapter 4, 5, 6, and specific characteristics 
and future works are presented in chapter 7.

2.  Related Works

2.1  XML Schema 

XML meta-data describes the logical structure, 
contents and constraints of XML document. DTD 
derived from SGML(Standard Generalized Markup 
Language) is one of the XML meta-data descrip- 
tion languages and has been widespreadly used  
so far. However, it has a lot of problems such as 
insufficient data types, different syntax from 
XML, lack of namespace, etc. These problems 
have shown much limitation on the usage of 
DTD and led the birth of a new XML meta-data 
description language, the XML Schema. 
XML Schema was approved as a W3C(World 
Wide Web Consortium) Recommendation in May 
2001. It extends the document model of DTD 
and strengthens the functionalities as an IIF. It 
supports 19 built-in types including string, 
integer, float, double, Boolean, etc. and 25 
derived built-in types. In addition, it effectively 

provides the flexibility of data type definition 
with user-defined type.
XML Schema is more comprehensive and efficient 
in several perspectives. As Roy and Ramanujan 
(2001) points out, its characteristics can be 
explained with the following 4 perspectives.

Data Type.  XML Schema provides not only 
rich data types but also user-defined types. There- 
fore, it is easy to generate XML document having 
appropriate syntax and semantics.
Syntax.  XML Schema follows XML syntax so 
that just one parser can process both XML meta- 
data and instances.
Reusability.  XML Schema supports inheritance, 
that is, the partial or overall of existing XML 
Schema can be reused by inheritance.
Namespace.  XML Schema prevents conflicts 
problems caused by naming duplication using 
namespace. In addition, it is easy to generate 
valid documents using various namespaces defined 
by several XML Schema. 

2.2  Previous Researches

We classify previous researches into Object- 
Oriented models and Relational models according 
to the modeling method. In addition, there are 
structure-mapping and model-mapping approaches 
for database schema design of XML document. 
In the structure-mapping approach, a database 
schema(in this paper, meta-model means database 
schema) is defined for each XML document schema. 
It is suitable when we store a large number of 
XML documents that conform to a limited number 
of document structures and when the document 
structure is static. Contrastingly, in the model- 
mapping approach, database schemas represent 
constructs of the XML document model. That is, 
a fixed database schema is used to store the 
structure of all XML documents. It is appropriate 
for storing a large number of dynamic and 
structurally-variant XML documents like numerous 
sophisticated Web applications (Yoshikawa et al., 
2001). <Table 1> and <Table 2> summarize 
some representative features and limitations of 
the model suggested by previous works.
This paper suggests an integrated model that is 
independent of the modeling method. As a solu- 
tion, it applies the DOM tree analysis to extract 
structural characteristics from XML Schema and 



332 Hoontae Kim․Taesoo Lim․Keunhee Hong․Suk-Ho Kang

Table 1.  Object-Oriented models for XML database

Model
Mapping
methodology

Target 
document

Features Limitations

Christophides 
et al., 1994

Structure 
mapping

DTD
- Create classes for all elements 
  declared in DTD

- Abuse classes
- Exclude the storage of additional 
  information.(comment, tag order, etc.)

Goldman
et al., 1999

Structure
mapping

XML 
instance

- Apply OEM(Object Exchange 
  Model) data model
- Introduce Dataguide about path 
  information

- Lack of document update
- Need more space to store 
  Dataguides than actual XML 
  data

Chung 
et al., 2001

Structure 
mapping

DTD
- Apply inheritance: solve null 
  value problem

- Exclude the storage of element 
  order information

Table 2.  Relational models for XML database

Model
Mapping 
methodology

Target 
document

Features Limitations

Florescu
et al., 1999 

Structure
mapping

XML 
instance

- Use directed labeled graph.
- Store node position and path 
  information

- Expensive to re-compose data
- Expensive and complex to 
  update

Shanmugasun
daram 

et al., 1999

Structure
mapping

XML 
instance

- Classify XML document
- Data-centric
- Document-centric
- Hybrid representation

- Exclude the storage of 
  additional information. 
  (comment, tag order, etc.)

Bertino 
et al., 2001

Structure
mapping

XML 
instance

- Store according to the structural 
  characteristics of DTD

- Exclude the storage of element 
  order information

Yoshikawa 
et al., 2001

Model 
mapping

XML 
instance

- Use directed labeled graph
- Store path information

- Lack of full-text search
- Lack of document update

performs object modeling to build database- 
independent data model, which is compliant with 
ODMG 3.0 Standard(Cattel and Barry, 2000). 
Furthermore, it designs a fixed database schema 
according to the model-mapping approach. 
Yhoshkawa et. al.(2001) suggested modeling and 
querying methods using the model-mapping 
approach. They focused on DTD and tried to 
make a RDB model. However, this paper 
suggests a database-independent meta-model to 
store XML Schema document. In addition, while 
they enumerated all the paths and stored the 
informations in a table, we decomposed the link 
informations to store them more efficiently.

3.  Modeling Method

3.1  Building Process

Our procedure to build XML Schema meta- 

model is divided into three parts-first, DOM tree 
analysis of XML Schema and then, clustering of 
each node, second, four meta modeling rules 
applying to clustered nodes and the last, 
relational and object-oriented mapping for storing 
the generated ODMG 3.0 compliant schema into 
both databases according to the fixed database 
schema. <Figure 1> illustrates the overall 
procedure. In reality, meta modeling for primitive 
data type and facet is previously performed before 
the entire process, for it does not require a 
specific XML Schema document.

3.2  Fixed Database Schema

In model-mapping approach, a fixed schema is 
used to store the structure of all XML documents. 
Each XML document structure is stored as the 
data in the database according to the fixed 
database schema. We have designed two database 
schemas for both relational and object-oriented 



A Meta-Model for the Storage of XML Schema using Model-Mapping Approach 333

Table 3.  Fixed database schemas for XML Schema

Tables in RDB Classes in OO DB Role

RootElementRepository RootElement Extent of root elements

ComplexTypeRepository ComplexType Extent of complex types

SubElementRepository subEelement Extent of elements except a root element

AttributeRepository Attribute Extent of attributes

SimpleTypeRepository SimpleType Extent of simple types

PrimitiveTypeRepository PrimitiveType Extent of primitive types

databases, which are similar to each other. 
<Table 3> shows specific tables and classes 
consisting of both fixed schemas.

DOM Tree Analysis

Meta Modeling

Relational Mapping

Object-Oriented 
Mapping

RDB

XML 
Schema 
document

XML 
Schema 
document

attribute
complextype facet

simpletype

rootelement

subelement primitive

(fixed) OO schema

OODB

(fixed) R schema

clustered
nodes

ODMG 3.0 compliant schema

Pre Modeling

DOM Tree Analysis

Meta Modeling

Relational Mapping

Object-Oriented 
Mapping

RDB

XML 
Schema 
document

XML 
Schema 
document

attribute
complextype facet

simpletype

rootelement

subelement primitive

(fixed) OO schema

OODB

(fixed) R schema

clustered
nodes

ODMG 3.0 compliant schema

Pre Modeling

Figure 1. Building procedure of XML Schema 
    meta-model.

4.  DOM Tree Analyses

When XML Schema is loaded, DOM tree analysis 
is activated to grasp the document structure. 
Originally, DOM is the method to represent 
elements of XML hierarchically as a tree using 
several types of node(http://www.w3.org/TR/2003/ 
WD-DOM-Level-3-Core-20030226/). In this paper, 
we classify these nodes into 7 types including 
rootelement, subelement, complextype, simpletype, 
attribute, primitive, and facet to analyze the 
structural characteristics concretely and precisely. 
<Figure 2> illustrates an example of DOM tree 
analysis. General_info　of <Figure 2(a)> is one 

of the complex types in RFQ.xsd We composed 
a RFQ(Request For Quotation) document, which 
was introduced at the eCatalog technical commi- 
ttee of Korea Integrated Forum on Electronic 
Commerce on February 22, 2002. and <Figure 
2(b)> is the result of DOM tree analysis for it. 

<complexType name=General_info>
   <element name=Description　type=string/>
   <element name=Total_amount　
      type=nonPositiveInteger/>
   <element name=Total_quantity　
      type=nonPositiveInteger/>
   <element name=Qoutation_currency　
      type=Standard_currency/>
   <element name=Exchange_rate_date　
      type=Standard_date/>
</complexType>

(a) General_info type

General_info

Description Total_amount Total_quantity Quotation_currency Exchange_rate_date

string nonPositiveInteger Standard_currency Standard_date

attribute
complextype facet

simpletype

rootelement

subelement primitive

General_info

Description Total_amount Total_quantity Quotation_currency Exchange_rate_date

string nonPositiveInteger Standard_currency Standard_date

attribute
complextype facet

simpletype

rootelement

subelement primitive

(b) DOM tree analysis of General_info type

Figure 2. Example of DOM tree analysis.



334 Hoontae Kim․Taesoo Lim․Keunhee Hong․Suk-Ho Kang

Figure 3. Type and element transformation.

<element name=RFQ　 type=RFQType/>
<complexType name=RFQType>
... </complexType>
<complexType name=Delivery_info>
   <element name=Delivery_terms_code
    type=Standard_terms_code/>
   <element name=Delivery_location
    type=string/>
</complexType>
<simpleType name=Doc_num base=string> 
</simpleType>
<simpleType name=Standard_date base=date　
></simpleType>

class RootElementRepository {
   attribute RFQType RFQ;
};
class ComplexTypeRepository {
   attribute RFQType RFQType;
   attribute Delivery_info Delivery_info;
};
struct Delivery_info {
   Standard_terms_code Delivery_terms_code;
   string Delivery_location:
};
class SimpleTypeRepository {
   attribute string Doc_num;
   attribute date Standard_date;
};

(a) RFQ.xsd (b) Meta modeling

This step analyzes the XML tree structure after 
loading the whole XML document. Even if the 
step requires large initial loading time, it is more 
efficient than other XML parsing approaches such 
as SAX(Simple API for XML) in the case of the 
high frequent access to XML document.

5.  Meta Modeling

Meta modeling is the stage to generate data 
model independent of database. This paper 
suggests 4 mapping rules and these rules are 
compliant with ODMG 3.0 standard. First rule is 
regarding to class creation. The other rules 
specify type, element, built-in type, and attribute 
transformations.

Class Creation Rule. “Three classes are always 
generated. Those are RootElementRepository, Simple- 
Type-Repository and ComplexTypeRepository classes.”
RootElementRepository, SimpleTypeRepository and 
ComplexTypeRepository classes store the infor- 
mation about root element, simple type and com- 
plex type, respectively.

Type and Element Transformation Rule. 
“ComplexType and SimpleType are defined as the 
attribute of ComplexTypeRepository and SimpleType- 
Repository class, respectively. Elements contained in the 
ComplexType are defined with struct declarer.”
A ComplexType is defined as an attribute of 

ComplexTypeRepository class after being re-defined 
with struct type declarer and the name and type 
name of the generated attribute have to be 
identical. <Figure 3> illustrates the transforma- 
tion of type and element. 
<Figure 3(a)> is some part of RFQ.xsd to 
show how element, complex type and simple type 
are transformed. As you see <Figure 3(b)>, root 
element RFQ, complex type and simple type are 
stored as an attribute of RootElementRepository, 
ComplexTypeRepository, SimpleTypeRepository, 
respectively. In addition, the type of attribute in 
the ComplexTypeRepository class is declared with 
struct type declarer.

Primitive Data Type Mapping rule. “A built- 
in primitive data type is transformed into an ODMG 
3.0 literal. However, it is applied separately for 
common data type, constrained data type, decomposed 
data type and combined data type.”
Built-in data types are derived from any- 
SimpleType that restricts anyType, the super type 
of XML Schema built-in data type hierarchy. It 
is classified into primitive data types derived 
directly from anySimpleType and data types 
extended from those primitive types. Refer to    
(http://www.w3.org/XML/Schema#dev) for the 
details.
As the XML Schema is not developed just for 
ODMG 3.0 standard, all data types of XML 
Schema don't correspond to those of ODMG 
standard. The XML Schema supplies plentiful 
data types to express both document and data 



A Meta-Model for the Storage of XML Schema using Model-Mapping Approach 335

Figure 4. Attribute transformation.

<element name=RFQ 
  type=RFQType/> </element>
<complexType name=RFQType>
...
  <attribute name=Quotation_req_num　 
       type=Doc_num/>
  <attribute name=Quotation_req_date
   type=Standard_date/>
</complexType>

class ComplexTypeRepository {
   ...
   attribute RFQTypeAttribute RFQTypeAttribute;
};
struct RFQTypeAttribute {
   Doc_num Quotation_req_num;
   Standard_date Quotation_req_date;
};

(a) RFQ.xsd (b) Meta modeling

centric characteristics. On the other hand, the 
ODMG standard provides more generic types 
than the XML Schema. We divide the built-in 
data types into four categories as follows:

∙Common data type.  It is the data type that is 
directly mapped into the ODMG literal such as 
float, boolean, double, string, etc. It is possible to 
directly map a float type into a float literal. The 
typedef declarer specifies it as follows:

typedef float float;

∙Constrained data type.  It is the data type that can 
be mapped by adding some restrictions to the 
ODMG literals such as nonPositiveInteger, 
positiveInteger, negativeInteger, nonNegative- 
Integer, etc. For instance, nonPositiveInteger is 
specified by long long type and restricted by the 
constraint that its value should be equal or less 
than zero. We design meta-model describing the 
type definition for the constrained data type and 
its indication for the stored procedure as follows:

typedef long long nonPositiveInteger;
class constraint_register{
  attribute list<constraint> constraints;
  void register();
};
struct constraint{
  string type;
  string check_method;
};

∙Decomposed data type.  This type is mapped onto an 
ODMG 3.0 literal by combining several built-in 
data types of XML Schema. The XML Schema 
decomposes a date type into several types, such as 

gYearMonth, gYear, gMonthDay, gDay, and 
gMonth. On the contrary, ODMG 3.0 only 
provides a date literal. Therefore, the functions to 
combine those types need to be provided as 
follows:

typedef date gYearMonth, gYear, gMonth, 
gMonthDay, gDay;
class constraint_register {
  attribute list<constraint> constraints;
  void register();
  date date_combine(); //a method for 
combining several                             
        separated types.
};

∙Combined data type. It is the data type that is 
defined by re-combining other types such as 
NOTATION, NMTOKENS, IDREFS, ENTITIES 
and so on. It is defined by using struct, set and list 
of ODMG literal according to the combination 
type as follows:

typedef set<QName> NOTATION;
typedef list<NMTOKEN> NMTOKENS;
typedef list<IDREF> IDREFS;
typedef list<ENTITY> ENTITIES;

Attribute Transformation Rule. “Attribute is 
defined using struct type declarer.”
In XML Schema, ComplexType can have 
attributes and subelements. Those attributes need 
to be stored in the struct for the ComplexType 
because it has its own name and type. However, 
it is difficult to distinguish it from the elements 
in the complex type (refer to Type and element 
transformation rule). Therefore, it is defined with 
additional struct type declarer. <Figure 4> 



336 Hoontae Kim․Taesoo Lim․Keunhee Hong․Suk-Ho Kang

Figure 6. Storage of relational database.

RootElementRepository Table

RE_1

RootElementID

CT_1RFQ

TypeIDRootElementName

RE_1

RootElementID

CT_1RFQ

TypeIDRootElementName

Delivery_info

RFQType

ComplexTypeName

CT_2

CT_1

ComplexTypeID

Delivery_info

RFQType

ComplexTypeName

CT_2

CT_1

ComplexTypeID

ComplexTypeRepository Table

PT_2Standard_dateST_2

ST_3

ST_1

SimpleTypeID

PT_4Standard_terms_code

PT_1Doc_num

TypeIDSimpleTypeName

PT_2Standard_dateST_2

ST_3

ST_1

SimpleTypeID

PT_4Standard_terms_code

PT_1Doc_num

TypeIDSimpleTypeName

SimpleTypeRepository Table

PT_4

PT_3

PT_2

PT_1

PrimitiveTypeID

nonPositiveInteger

date

decimal

string

PrimitiveTypeName

PT_4

PT_3

PT_2

PT_1

PrimitiveTypeID

nonPositiveInteger

date

decimal

string

PrimitiveTypeName

PrimitiveTypeRepository Table

string

Standard_terms_code

TypeName

SE_2

SE_1

subElementID

Delivery_location

Delivery_terms_code

subElementName

CT_2

CT_2

IncludedTypeID

string

Standard_terms_code

TypeName

SE_2

SE_1

subElementID

Delivery_location

Delivery_terms_code

subElementName

CT_2

CT_2

IncludedTypeID

subElementRepository Table

illustrates the example of attribute transformation. 
<Figure 4(a)> shows two attributes of RFQType 
complex type. They are declared with struct type 
declarer and then, defined as an attribute of 
Complex-TypeRepository like <Figure 4(b)>. 

6.  Database Mapping

After object modeling, the information extracted 
from XML Schema is stored according to the 
fixed database schema. Both databases store the 
information according to the following rules. 

∙RootElementRepository class is mapped into 
RootElementRepository table in RDB and Root- 
Element class in OODB.
∙ComplexTypeRepository class is mapped into 
ComplexTypeRepository table and ComplexType 
class.
∙Complex type declared by struct is mapped into 
subElementRepository table and subElement class.
∙Attribute type declared by struct is mapped into 
AttributeRepository table and Attribute class.
∙SimpleTypeRepository class is mapped into Sim- 
pleTypeRepository table and SimpleType class.
∙Primitive data type declared by typedef is mapped 
into PrimitiveTypeRepository table and Primitive- 
Type class.

<Figure 5> illustrates the tables, fields, primary 
keys, and foreign keys in the relational database 
schema as stated in 3.2, and the mapping 

example for <Figure 3(b)> meta model is 
shown in <Figure 6>. An OODB mapping is 
similar to RDB mapping, therefore we omit it.

TypeIDRootElementNameRootElementID TypeIDRootElementNameRootElementID

RootElementRepository

ComplexTypeNameComplexTypeID ComplexTypeNameComplexTypeID

ComplexTypeRepository

IncludedTypeIDTypeNamesubElementNamesubElementID IncludedTypeIDTypeNamesubElementNamesubElementID

subElementRepository

AttributeRepository

IncludedTypeIDTypeIDAttributeNameAttributeID IncludedTypeIDTypeIDAttributeNameAttributeID

SimpleTypeRepository

TypeIDSimpleTypeNameSimpleTypeID TypeIDSimpleTypeNameSimpleTypeID

PrimitiveTypeRepository

PrimitiveTypeNamePrimitiveTypeID PrimitiveTypeNamePrimitiveTypeID

Figure 5. Relational database schema.

7.  Conclusions

This paper proposes a meta-model for the storing 
of XML Schema, which is independent of a 
specific database. To build our model, we used 
the model-mapping approach, DOM tree analysis 
and object-oriented modeling. 
First, model-mapping approach fixes the meta- 
model so that it prevents from abusing classes 
and tables. It makes it easy to update dynamic 
XML document and as a result increases the 
efficiency of information management and retrieval. 



A Meta-Model for the Storage of XML Schema using Model-Mapping Approach 337

홍 근 희

한국외국어대학교 산업공학과 학사

서울대학교 산업공학과 석사

현재: 오픈타이드코리아 e-Business Consulting 

    Group 컨설턴트 

관심분야: Information Strategic Planning, 

    e-Business Strategic Planning

강 석 호

서울대학교 물리학과 학사

미국 University of Washington 석사

미국 Texas A&M University 박사

현재: 서울대학교 산업공학과  교수

관심분야: Intelligent Manufacturing Systems, 

    e-business

김 훈 태

서울대학교 산업공학과 학사

서울대학교 산업공학과 석사

서울대학교 산업공학과 박사

현재: 대진대학교 산업시스템공학과 부교수

관심분야: BPM, web services, 생산정보시스템

임 태 수

서울대학교 산업공학과 학사

서울대학교 산업공학과 석사

서울대학교 산업공학과 박사

현재: LG 생산기술원 디자인엔지니어링그룹 

    선임연구원

관심분야: 생산정보시스템, 지식정보 시스템, 

    전자상거래표준화

Secondly, a lot of time was spent on the DOM 
tree analysis. Although a lot of time was spent, 
we can precisely and concretely grasp the 
structural characteristics of the XML document  
And last, object-oriented modeling easily catches 
the tree structure of XML document. We 
designed an effective and neutral meta- model 
following object-oriented ODMG 3.0 standard.

References

Bertino, E. and Catania, B.(2001), Integrating XML and 
databases, IEEE Internet Computing, 5, 84-88.

Bourret, R.(2003), XML and Databases, Tech. report, 
Technical Univ. Darmstadt, http://www.rpbourret.com/ 
xml/

Cattell, R.G.G. and Barry, K. D.(2000), The object data 
standard: ODMG 3.0., Morgan Kaufmann Publishers

Christophides, V., Abiteboul, S., Cluet, S. and Scholl, M. 
(1994), From structured documents to novel query 
facilities, SIGMOD Rec, 23, 313-324.

Chung, T., Park, S., Han, S. and Kim, H.(2001), Extrac- 
ting Object-Oriented Schemas from XML DTDs Using 
Inheritance, The 2nd International Conference on Electronic 
Commerce and Web Technologies(EC-Web) with LNCS

Document Object Model(DOM) Level 3 Core Specification 
(2003), http://www.w3.org/TR/2003/WD-DOM-Level-3- 
Core-20030226/

Extensible Markup Language(XML) Schema.(2001) http:// 
www.w3.org/XML/Schema#dev

Florescu, D. and Kossmann, D.(1999), A performance 
evaluation of alternative mapping schemes for storing 
XML data in a relational database, Tech. Rep. 3680, 
INRIA

Florescu, D. and Kossmann, D.(1999), Storing and querying 
XML data using an RDBMS, IEEE Data Engineering 
Bulletin, 22, 27-34.

Goldman, R., Mchugh, J. and Widom, J.(1999), From 
semistructured data to XML: migrating the Lore data 
model and query language, The 2nd International 
Workshop on the Web and Databases, 25-30.

Lin, H., Risch, T. and Katchaounov, T.(2000), Object- 
Oriented mediator queries to XML data, The 1st Interna- 
tional Conference on Web Information Systems Engineering, 38- 
45.

Roy, J. and Ramanujan A(2001)., XML Schema Language: 
Taking XML to the next level, IEEE IT Pro, 37-40.

Shanmugasundaram, J., Tufte, K., Gang, H., Zhang, C., 
Dewitt, D. and Naughton, J.(1999), Relational data- 
bases for querying XML documents: limitations and 
opportunities, The 25th Conference on Very Large Data 
Bases, 302-314.

Yoshikawa, M., Amagasa, T., Shimura, T. and Uemura, S. 
(2001), XRel: A path-based approach to storage and 
retrieval of XML documents using relational databases, 
ACM Transactions on Internet Technology, 1, 110-141


