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요  약

일반 으로  Lebesgue 분에서 성립하지만 퍼지 분에서 성립되지 않는 성질이 몇 가지 있다. 그  하나가 선형성이다. 

본 논문에서는 선형성 표 식에서 덧셈을 supremum 으로 곱셈을 infimum으로 신한 퍼지선형성의 정의를 소개하고 구

간값을 갖는 함수의 노름 퍼지 분이 퍼지가법성을 갖는 퍼지 측도와 연속인  노름이 saturated 조건을 만족할 때, 

[Max] 조건을 만족하는 가측함수에 해 퍼지선형성이 성립함을 보 다.

Ab stract

In general, the fuzzy integral lacks some important properties that Lebesgue integral possesses. One of them is 

linearity. In this paper, we introduce fuzzy linearity in which we use the supremum and the infimum instead of 

additon and scalar multiplication in the expression of linearity and show that the fuzzy linearity of the seminormed 

fuzzy integrals of interval-valued functions when the fuzzy measure g is  fuzzy additive, the continuous t-seminorm 

is saturated and measurable functions satisfy the condition[ Max ] .
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1.  Introduction

Since Sugeno[9] define a fuzzy measure as a 

monotone set function without additivity and a fuzzy 

integral with respect to fuzzy measure,  and it was made 

much deeper by the authors[6,7,11], but their integrands 

are all functions (point-valued). 

On the other hand, it is well known that set-valued 

functions have been used repeatedly in Economics[3]. 

Integral of set-valued functions had been studied by 

Aumann[1], Debreu[2], and others. But all the integrals 

are based on Lebesgue integrals. Zhang[12,13] has 

defined fuzzy integrals of set-valued functions by using 

fuzzy integrals. This fuzzy integral does not hold 

linearity as consequence of the non-additivity of the 

fuzzy measure,

Klement and Ralescu[4] showed that the fuzzy integral 

has some linearity properties only for small classes of 

fuzzy measures. In [5], we introduced fuzzy linearity in 

which we use the supremum and the infimum instead of 

addition and scalar multiplication in the expression of 

linearity. In this paper, we extend to the fuzzy integral 

of interval- valued function.

2. Preliminaries

We recall some notion which will be used in this 

paper and investigate elementary properties. 

Let P ( [ 0 , 1] )  be the power set of [ 0 , 1] , X  be a 

nonempty set, A is a σ-algebra formed by the subsets 

of X ,  ( X,  A) is a measurable space, and a set 

function g :  A→ [ 0 , 1]  is a fuzzy measure defined by 

Sugeno. From now on, we consider only the set 

L
0
(X) = { f : X → [ 0 , 1] | f  is measurable }

For f∈L 0(X)  the fuzzy integral of on A  with 

respect to a fuzzy measure g  defined by 

⌠
⌡A
h dg= sup α∈ [0, 1] [α∧g(A∩H α)].
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When A = X , the fuzzy integral is denoted by 

  .

Definition 2 . 1 . [7,8] A t-seminorm is a function  

⊤ : [0, 1]×[ 0, 1]which satisfies : 

(1) ⊤(x, 1) = ⊤(1, x) = xfor each x ∈ [0, 1] , 

(2) if x 1≤x 3, x 2 < x 4
for each x 1, x 2, x 3, x 4 ∈ [ 0, 1] ,   

   

then ⊤( x 1, x 2)≤⊤(x 3, x 4) .

E x amp le 2 . 2 .  The following functions are t-seminorm 

(1) ⊤(x, y) = x∧y
(2) ⊤( x, y) = x y

(3) ⊤( x, y) = 0∨( x + y - 1)

Let ⊤be a t-seminorm. For all h∈ L
0
(X), the 

seminormed fuzzy integral of h  over A ∈A to fuzzy 

measure g is defined as 



⊤  α∈    ⊤α α

 In what follows, ⌠
⌡X
h⊤gwill be denote by  ⌠

⌡ h⊤g
 

for short. 

Clearly, the seminormed fuzzy integral is the fuzzy 

integral for the case ⊤(x, y) = x∧y .

Let

          ⊂    

Then the elements in the set I( [ 0 , 1])  are called 

interval numbers. 

 Operations ∗∈{+ ,⋅,∨,∧ } .

On the interval numbers set, we make following 

definitions :

 

r∗ p = [r
-
∗p

-
, r

+
∗p

+
] ,

k⋅ r = [k⋅r
-
, k⋅r

+
] ,

r ≤ p  iff  r
-
≤ p

-
, r

+
≤ p

+,

Let B is the σ-algebra of Borel subsets of [0, 1].  A 

set-valued function is mapping

F : X → P( [ 0 , 1] )\ {∅ }.

F  is said to be closed valued iff F(x)  is closed for 

every x∈X , and F  is said to be measurable iff 

F
W
(B) = {x∈X | F(x)∩B≠∅}∈A

for every B∈B
 An interval-valued function is a set-valued function 

f : X → I( [ 0 , 1]) . It is usually written as

        , 

where

     ,   .

The following lemma shows that the measurability of 

interval-valued functions is closed under any operations.

Lemma 2 . 3 .  [12] Let f(x) = [ f
-
(x) , f

+
(x) ] . Then f  

is measurable iff f-  and f+  are measurable. 

From the above Lemma 2.3, we can consider the set

L
0
(X) = { f : X → I( [ 0 , 1] ) | f  is measurable } 

By D. Zhang and Z. Wang [12] define the fuzzy 

integral of set-valued functions as following  :

Let H : X → P( [ 0 , 1])\ {∅ }  be a closed set-valued 

function. Then the set 

{⌠⌡A f dg : f is a measurable selection of H}  is called 

the fuzzy integral of H  on A , where A∈A. H  is said 

to be integrable on A , if ⌠
⌡A
H dg≠∅ .

It is clear that H  is integrable on every A∈A if H  

is a closed-valued measurable set-valued function. By 

this property, it is easy to see that a measurable 

interval-valued function f  is integrable.

Prop osition 2 . 4 .  [12] Let f  be a measurable interval- 

valued function. Then 

⌠
⌡ f dg= [ ⌠

⌡f
-
dg , ⌠

⌡f
+
dg ].

The following theorem shows that extended results 

corresponding to Sugeno's fuzzy integral are obtained.

Theorem 2 . 5 .  [12] Fuzzy integrals of measurable 

interval-valued function have the following properties :

(1) f 1≤ f 2
 implies ⌠

⌡A
f 1 dg≤

⌠
⌡A
f 2 dg . 

(2) If A , B∈A, then A⊂B  implies ⌠
⌡A
f dg≤⌠

⌡B
f dg

(3) If A ∈A, ∈  , then ⌠
⌡A
r dg = r∧ g(A)·

(4) If r∈I( [ 0 , 1]) , then

⌠
⌡A

( f + r )dg≤⌠
⌡A
f dg + ⌠

⌡A
r dg .

3. Nonlinearity of  the Fuzzy Integral  of  

Interval-valued Function

In comparison with the classical measure, the fuzzy 

measure abandons the additivity, but reserves the 

monotonicity, the continuity (or partial continuity), and 

vanishing on the empty set. So the fuzzy integral with 

respect to fuzzy measure lack some important properties 

that Lebesgue integral possesses. For instance Lebesgue 

integral has linearity but the fuzzy integral does not. We 

can see this in the following example.

E x amp le 3 . 1 .  Let (X = I ( [ 0, 1]) ,A , g)  be the  

Lebesgue measure space. 

(1) If we take h (x) = [ 1
2
x , x ]  for any x ∈ [0 , 1] , 
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and a =
1
2

, then we have 

⌠
⌡a h dg = ⌠

⌡
1
2

⋅[ 1
2
x , x ] dg

= ⌠
⌡[ 1

4
x ,

1
2
x ] dg

= [ 1
5

,
1
3 ]

and

a⌠⌡ h (x) dg =
1
2

⌠
⌡ [ 1

2
x , x ] dg

=
1
2

⋅[ 1
3

,
1
2 ]

= [ 1
6

,
1
4 ]

.

Consequently, we have

⌠
⌡

1
2
h dg≠

1
2

⌠
⌡ h dg

.

(2) If we take h 1(x) = [ 1
4
x ,

1
3
x]  

h 2(x) = [ 1
4
x ,

1
2
x],  then we have

 
⌠
⌡ h 1(x)dg = [⌠⌡ 1

4
x dg , ⌠

⌡
1
3
x dg]

= [ 1
5

,
1
4 ],

, 

and

 
⌠
⌡ h 2(x)dg = [⌠⌡ 1

4
x dg , ⌠

⌡
1
2
x dg]

= [ 1
5

,
1
3 ],

but

 
⌠
⌡( h 1(x)+ h 2(x)) dg = [⌠⌡ 1

2
x dg , ⌠

⌡
5
6
x dg]

= [ 1
3

,
5
11 ]

.

Hence

⌠
⌡ h 1(x)dg+

⌠
⌡ h 2(x)dg≠

⌠
⌡( h 1(x) + h 2(x) )dg

(3) If we take h = [0 , x]   for all x∈ [0 , 1]   and 

r = [ 1
5

,
1
2 ]  , then we have

 

⌠
⌡( r⋅ f ) dg = ⌠

⌡( [ 1
5

,
1
2 ]⋅ [0 , x ] )dg

= ⌠
⌡ [ 0 ,

x
2 ] dg

= [⌠⌡0 dg , ⌠
⌡
x
2
dg]

= [0 ,
1
3 ]

 

But

 r⋅⌠
⌡ f dg = [ 1

5
,

1
2 ]⋅[⌠⌡0 dg , ⌠

⌡x dg]
           = [ 1

5
,

1
2 ]⋅[0 ,

1
2 ]  

           = [0 ,
1
4 ] .

Therefore we get

⌠
⌡( r⋅ f ) dg≠ r⋅⌠

⌡ f dg
 

In [4], Klement and Ralescue showed that the fuzzy 

integral has some linearity properties only for small 

classes of fuzzy measures. 

Prop osition 3 . 2 .   [4] Let ( X, A, g) be a fuzzy 

measure space. Then the following statements are 

equivalent : 

(1) For any h 1, h 2∈L
0(X), a , b∈R+

 : 

a⋅h 1 + b⋅h 2∈L
0
(X) ⇒

⌠
⌡A

(a⋅h 1 + b⋅h 2)dg= a⋅
⌠
⌡A
h 1 dg+ b⋅

⌠
⌡A
h 2 dg

  

(2) g  is a probability measure fulfilling g(A )∈ {0 , 1 }  

for all A∈A.

We say that a function F : L
0
(X) → I ( [ 0 , 1] )  is 

fuzzy linear of interval-valued function if 

F [ ( r∧ h 1 ) ∨ ( s∧ h 2 ) ]

= [ r∧F ( h 1 ) ] ∨ [ s ∧F( h 2 ) ]

where r , s∈I ( [ 0 , 1] ) .

In [5], we showed the following result for the case 

real-valued function

Let ( X, A, g) be a fuzzy measure space. and let 

h 1, h 2∈L
0
(X) . Then the fuzzy linearity for the fuzzy 

integral 

   ⌠
⌡A

( ( a∧ h 1 ) ∨ (b ∧ h 2 ) ) dg

                    = ( a∧⌠
⌡A
h 1 dg)∨(b∧⌠

⌡A
h 2 dg )

for any A∈A and every nonnegative constants a  and 

b  holds if g  is a fuzzy additive measure.

We can extend the above property  to the fuzzy 

integral of interval-valued functions under the same 

condition.

Theorem 3 . 3 .   Let ( X, A, g) be a fuzzy measure 

space. and let h 1 , h 2∈L
0
(X) . Then the fuzzy linearity 

for the fuzzy integral 

  ⌠
⌡A

( ( r∧ h 1 ) ∨ ( s∧ h 2 ) ) dg

                  = ( r∧⌠
⌡A
h 1 dg)∨( s∧⌠

⌡A
h 2dg )

for any A∈A and r , s∈I ( [ 0 , 1] )  holds if g  is a 

fuzzy additive measure.

Proof.  We amy assume that A = X  without loss of 

generality. Using the Proposition 2.4 and a fuzzy 

additivity measure of g, we have 

⌠
⌡A

( f ∨ h ) dg  

= [⌠⌡A( f
-
∨h

- ) dg , ⌠
⌡A

( f+∨h
+ ) dg ]  
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= [⌠⌡A f
-
dg∨ ⌠

⌡A
h

-
dg , ⌠

⌡A
f
+
dg∨ ⌠

⌡A
h

+
dg ]

= [⌠⌡A f
-
dg , ⌠

⌡A
f
+
dg ]∨ [⌠⌡Ah

-
dg , ⌠

⌡A
h

+
dg ]

= ⌠
⌡A
f dg∨⌠

⌡A
h dg .

The remaining property ⌠
⌡A

( a∧ f )dg= a∧⌠
⌡A
f dg   

 which does not need fuzzy additivity of g  can be 

obtained in the same way as in [5]. 

4. Fuzzy Linearity of  the Seminormed 

Fuzzy Integral of  the Interval-valued 

Function.

In [5], to prove the equality

a∧⌠
⌡A
h⊤g = ⌠

⌡A
(a∧h)⊤g

we introduced two concepts of saturated t-seminorm 

and the condition [ Max ] .

There is an important subset of I×I . The closure of 

the subset of I×I  consisting of the point ( x, y )  with 

⊤(x, y) = xis called the maximal x-region of the 

t-seminorm ⊤ . It is easy to see that every maximal x
-region contains at least two line segments

{(x, 1) : 0 ≤ x ≤ 1 }  and {( 0, y) : 0 ≤y ≤1 } .

In Example 2.2, (1) has the maximal x-region the 

triangle y ≥ x , and (2), (3) have the smallest possible 

maximal x-region

{(x, 1) : 0 ≤ x ≤ 1 }∪ {(0, y) : 0 ≤y ≤1 } .

For a t-seminorm ⊤ , define a map 

t : [ 0, 1] → [ 0, 1]  by 

t (x) = inf {y : ⊤(x, y) = x } .

In general, since 0 ≤ ⊤(0, y) ≤ ⊤(0, 1) = 0  for all 

y ∈ [0, 1] , t ( 0) = 0 ; Since ⊤(1, y) = yfor all 

y ∈ [0, 1] , t ( 1) = 1 . For ⊤(x, y)= x∧y , t (x) = xfor 

all x ∈ [0, 1] .

We say that a measurable function h  satisfies the 

condition[ Max ]  with respect to a t-seminorm ⊤  and a 

fuzzy measure g  if the following condition holds:   

t (α 0 ) ≤ g(H α 0∩ A)  whenever

⌠
⌡A
h⊤g = α

0
;

in other words, 

⊤(α 0, β) = α
0

for every β > g(H α
0∩ A)

whenever  ⌠
⌡A
h⊤g = α

0
.

The concept of the condition[Max] is necessary for 

the fuzzy linearity. Now, we can  consider the other 

definition.

A t-seminorm is said to be saturated if for all  

x' ≤ x, x, x'∈ [0, 1]

⊤(x', y) = x'whenever ⊤(x, y) = x .

Many  t-seminorm satisfy this condition. In fact, all 

the t-seminorms in Example 2.2 are saturated. The 

following example shows that a continuous t- seminorm 

⊤  may not be saturated.

E x amp le 4 . 1 .  Let A , B  and C  be the regions of the 

square I×I  given as follows 

(a) A  is the triangle with vertices ( 1, 0) , ( 0, 1)   

and ( 1, 1) .

(b) B  is the triangle with vertices ( 1, 0) , ( 0, 1)and 



 

 .

(c) C  is the tetrahedron with vertices ( 1, 0) , ( 0, 0) ,

( 0, 1) , 

 

 .

For (a, b)∈A , ⊤(a, b) = a∧b . In B, the line 

segments joining the points (a, 1- a)  and

( 2a+1
4

,
2a+1

4 ) , for 0 ≤ a ≤
1
2

, with the ⊤

-value a  ; and extend it by symmetry. Finally, ⊤  is 

defined to be 0 in the region C. It is not hard to see that 

⊤  is a continuous t-seminorm. But it is not saturated 

because    ⊤

 

  ≠ 


even if ⊤

 

   


and 




 


.  

Theorem 4 . 2 .  Let (X, A , g)be a fuzzy measure 

space. Suppose the t-seminorm ⊤  is continuous and 

saturated. If h∈ L
0
(X)satisfies the condition[ Max ] , 

then 

⌠
⌡A

(a∧h)⊤g = a∧⌠
⌡A
h⊤g

for every a ∈ [0, 1]and A∈A.

In [5], We shows that the fuzzy linearity for the 

seminormed fuzzy integral holds from Theorem 4.2 and 

fuzzy additivity of fuzzy measure g .

Now, we consider the extended concept of such 

linearity. 

Theorem 4 . 3 .  Let (X, A , g)  be a fuzzy measure 

space and let 

h 1 , h 2∈L
0
( X ) , A∈A, r , s∈I ( [ 0 , 1] ) . Suppose 

the t-seminorm ⊤  is continuous and saturated. Then 

the fuzzy linearity for the seminormed fuzzy integral of 

the interval-valued function




∧∨ ∧⊤
 ∧

 ⊤∨∧⊤
holds if both h 1

 and h 2
 satisfy the condition[Max] 
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and g  is a fuzzy additive measure.

Proof.  Without any loss of generality, we can assume 

that A = X . Since g  is a fuzzy additive measure, it is 

clear that 

⌠
⌡( h 1 ∨ h 2 ) ⊤g = ⌠

⌡ h 1⊤g∨
⌠
⌡ h 2⊤g .

So, we only need to prove that 

⌠
⌡ ( r∧ h )⊤ g = r∧⌠

⌡ h⊤ g .

Let h 1
 and h 2

 satisfy the condition[Max] and the t

-seminorm ⊤  is continuous and saturated.

Using the Theorem 4.2, we have

⌠
⌡ ( r∧ h )⊤ g = ⌠

⌡( [ r- , r+]∧ [h- , h+ ] )⊤g

= ⌠
⌡( [r-∧h

- , r+∧ h+ ] )⊤g

= [⌠⌡(r-∧h
-) ⊤ g , ⌠

⌡(r+∧ h+)⊤g]
= [r-∧⌠

⌡h
-⊤ g , r+∧ ⌠

⌡ h
+⊤g]

= [r- , r+]∧ [ ⌠
⌡h

-⊤ g , ⌠
⌡ h

+⊤g]
= r∧⌠

⌡ h⊤ g
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