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Fuzzy Linearity of the Seminormed Fuzzy Integrals of
Interval-valued Functions
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Abstract

In general, the fuzzy integral lacks some important properties that Lebesgue integral possesses. One of them is
linearity. In this paper, we introduce fuzzy linearity in which we use the supremum and the infimum instead of
additon and scalar multiplication in the expression of linearity and show that the fuzzy linearity of the seminormed

fuzzy integrals of interval-valued functions when the fuzzy measure g is

fuzzy additive, the continuous t-seminorm

is saturated and measurable functions satisfy the condition[Max].

Key words

1. Introduction

Since Sugenol9] define a fuzzy measure as a
monotone set function without additivity and a fuzzy
integral with respect to fuzzy measure, and it was made
much deeper by the authors[6,7,11], but their integrands
are all functions (point-valued).

On the other hand, it is well known that set-valued
functions have been used repeatedly in Economics[3].
Integral of set-valued functions had been studied by
Aumann[1], Debreul2], and others. But all the integrals
are based on Lebesgue integrals. Zhang[12,13] has
defined fuzzy integrals of set-valued functions by using
fuzzy integrals. This fuzzy integral does not hold
linearity as consequence of the non-additivity of the
fuzzy measure,

Klement and Ralescul4] showed that the fuzzy integral
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. Interval number, fuzzy linearity, condition[Max], saturated

has some linearity properties only for small classes of
fuzzy measures. In [5], we introduced fuzzy linearity in
which we use the supremum and the infimum instead of
addition and scalar multiplication in the expression of
linearity. In this paper, we extend to the fuzzy integral
of interval- valued function.

2. Preliminaries

We recall some notion which will be used in this
paper and investigate elementary properties.

Let P([0,1]) be the power set of [0, 1], X be a

nonempty set, d is a o-algebra formed by the subsets
of X,
function g: [0, 1] is a fuzzy measure defined by

(Xx, f) is a measurable space, and a set

Sugeno. From now on, we consider only the set

LUX) = {f: X—[0,1]]| f is measurable }

For feL%X) the fuzzy integral of on A with
respect to a fuzzy measure g defined by

J b de=sup oo nleNe(ANHD]-



A =X, the fuzzy integral is denoted by

Definition 2.1. [78] A t-seminorm is a function
T :[0, 11x[0, 1]which satisfies :

(D T(x,1) = T, x) = xfor each x < [0, 1],

2) if x1<x3, x2<x4f0r each X1, %9, %3 x4 € [0, 11,

then T(xlyxz) gT(x3yx4).

Example 2.2. The following functions are t-seminorm
D T(x, ) = xAy

2 T(x, 9 = xy

@) T, =0Vx+y—1

Let The a t-seminorm. For all pe L%X), the

seminormed fuzzy integral of j over A ed to fuzzy
measure g is defined as

/ hTg=supep.y T(a s(AMH,)
A

In what follows, f T gwill be denote by f hTg
X

for short.
Clearly, the seminormed fuzzy integral is the fuzzy
integral for the case T (x, y) = xAv-

Let
1o, 1)={r : r=0",r"] 0,1}

Then the elements in the set [([0,1]) are called
interval numbers.

Operations *xe{+, - ,\V, A}
On the interval numbers set, we make following
definitions :

rkp=1[rkp , rkp’l,
ker="T[k v, k-r"],
r<p iff r<p ,ri<pt

Let B is the o-algebra of Borel subsets of [0, 1. A

set—-valued function is mapping

F: X— P([0,1D\{2}.

F is said to be closed valued iff F(x) is closed for
every xeX, and [ is said to be measurable iff

FYB) = (xeX|F(NB+o)ed

for every BeB
An interval-valued function is a set-valued function
f: X— K[0, 1] It is usually written as

f@)=[f (), f ()],
where
f (z)=inf ?(x), fz)= sup?(x).

The following lemma shows that the measurability of
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interval-valued functions is closed under any operations.
Lemma 2.3. [12] Let Ax) = [f (x) , £ (x)]. Then ¥
is measurable iff = and f' are measurable.
From the above Lemma 2.3, we can consider the set

LYX) = {f: X—>K[0,1]) | fis measurable }

By D. Zhang and Z. Wang [12] define the fuzzy
integral of set-valued functions as following

Let H: X— P([0,1D\{®} be a closed set-valued
function. Then the set

{ f Af dg: f is a measurable selection of H} is called
the fuzzy integral of H on A, where Ae d. 7 is said
to be integrable on A, if fA Hdg+®.

It is clear that [ is integrable on every A=A if H
is a closed-valued measurable set-valued function. By
this property, it is easy to see that a measurable

interval-valued function # is integrable.

Proposition 2.4. [12] Let f be a measurable interval-
valued function. Then

[ rag=[ [r ae. [r de]

The following theorem shows that extended results
corresponding to Sugeno’s fuzzy integral are obtained.

Theorem 2.5. [12] Fuzzy integrals of measurable
interval-valued function have the following properties :

(1) 7,< 7, implies fA}ldgng}zdg.
(2 If A, Bed, then Ac B implies fAfdgg fodg

3) If Aedreno,1]), then fA}dg = 7 A gl(A):
@) If y=K[0,1]), then

fA(?+;)ng fA;‘dg + fA;dg-

3. Nonlinearity of the Fuzzy Integral of
Interval-valued Function

In comparison with the classical measure, the fuzzy
measure abandons the additivity, but reserves the
monotonicity, the continuity (or partial continuity), and
vanishing on the empty set. So the fuzzy integral with
respect to fuzzy measure lack some important properties
that Lebesgue integral possesses. For instance Lebesgue
integral has linearity but the fuzzy integral does not. We
can see this in the following example.

Example 3.1. Let (x = 7([0, 11).%, & be the

Lebesgue measure space.

(1) If we take 74(x) = [%x x] for any xe[0, 11,
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and 4 = l, then we have

It B
I[ix éx]dg
53]

—
Q
>
&

|

and

af%(x) dg = %f[% xx] dg
_ 1. [L ’ L]
-3 4]
6 4
Consequently, we have
fé%dgiéfﬁdg-
(2) If we take f (x) = [ix %x]
To(x) = [ix éx], then we have

f@l(x)dg = [flxdg, f%xa/g]y

[5 !
and
f@z(x)a’g = [fixdg, féxdg]
[
but

i)+ hy() dg = | [+ xdg, [ 2xae]
6

[3’11

Hence
[dg+ [roGrde+ [(hi(0) + hy(x))de

(3) If we take = [0,«] for all xe[0,1] and
—_[1 1
r_[S ,2],thenwehave

[ ae = [([+. 4

;-f;‘dg: %%][IOdg fxdg]
— L’l]_[O,L]

o)

Therefore we get
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[G-Trdg+7 [Tde

In [4], Klement and Ralescue showed that the fuzzy
integral has some linearity properties only for small
classes of fuzzy measures.

Proposition 3.2. [4] Let ( X, A, g) be a fuzzy
measure space. Then the following statements are
equivalent :

(1) For any h,, h,e LYX), a, beR, :

a hy +b-hel'(X) =
fA(a'h1+b-h2)a’g=a' fAhldg-l- b- fAhzdg

(2) g is a probability measure fulfilling g(A)={0, 1}
for all A=+

We say that a function F:L%X)—>I([0,1]) is
fuzzy linear of interval-valued function if

FLOARD V(A Ry)] _ _
=[vAF(r)IN [ s AF(hjy)]

where », seI([0,1])-
In [5], we showed the following result for the case
real-valued function

Let ( X, d, @) be a fuzzy measure space. and let
hy, hye L%(X). Then the fuzzy linearity for the fuzzy
integral

[ (CaAnIN (b Ah)) de
= (aN [, mde)\V/(oA [ hsde)

for any Ae o and every nonnegative constants , and
b holds if g is a fuzzy additive measure.

We can extend the above property to the fuzzy
integral of interval-valued functions under the same
condition.

Theorem 3.3. Let ( X, d, g) be a fuzzy measure
space. and let 7, h,e L°(X). Then the fuzzy linearity
for the fuzzy integral

JCOARDN GAR) de
= (;AfAz1dg)V(gAfAzzdg)

for any Aed and 7, se1([0,1]) holds if g is a
fuzzy additive measure.

Proof. We amy assume that 4 = X without loss of
generality. Using the Proposition 24 and a fuzzy
additivity measure of g, we have

J () dg
=[[(rvirde, [ (VT dg]



=[[,7de [ nde, [ fagv [ nag]
“[fras. [V as [
= fA;’dg\/fAng-

The remaining property f ., (aA f)dg= a f ., fdg

which does not need fuzzy additivity of g can be
obtained in the same way as in [5].

4. Fuzzy Linearity of the Seminormed
Fuzzy Integral of the Interval-valued
Function.

In [5], to prove the equality

a/\ fAth = fA(a/\h)Tg

we introduced two concepts of saturated #—seminorm
and the condition [Max].

There is an important subset of Jx7. The closure of
the subset of < consisting of the point (x, y) with
T(x, y) = xis called the maximal x-region of the
t-seminorm T . It is easy to see that every maximal
-region contains at least two line segments

{(x, D:0<x<1}and {(0, »:0<y<I1}.

In Example 2.2, (1) has the maximal x-region the
triangle y > x, and (2), (3) have the smallest possible
maximal x-region

{(x, D:0<x<13UJL0, »:0<y<1}.

For a t-seminorm T, define a map

t: [0, 11— [0, 1] by

t(x) = inf{y: T(x, ») = x}.

In general, since (< T(0, y) < T7(0,1)=0 for all
ye [0, 1], t(0) =05 Since T(1,y) = yfor all
ve [0, 11, t (1) = 1. For T (x, ») =x Ay t (x) = xfor
all x e [0, 1]

We say that a measurable function j satisfies the

condition[Max] with respect to a seminorm T and a
fuzzy measure g if the following condition holds:

t (o)) < g(H, () A) whenever
fAth = ay
in other words,

T (a,, B) = a,for every B> g(H,, N A)

whenever thg: ap-
A

The concept of the condition[Max] is necessary for
the fuzzy linearity. Now, we can consider the other
definition.
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A t-seminorm is said to be saturated if for all

x <x, x,x ][0, 1]
T(x’, v) = x’Whenever T (x, y) = x.
Many t-seminorm satisfy this condition. In fact, all

the t-seminorms in Example 2.2 are saturated. The
following example shows that a continuous t- seminorm
T may not be saturated.

Example 4.1. Let A, B and ¢ be the regions of the
square JxJ given as follows
(a) A is the triangle with vertices
and (1, 1).
(b) B is the triangle with vertices (1, 0), (0, 1)and

5 1l
4’ 4
(c¢) ¢ is the tetrahedron with vertices (1, 0), (0, 0),
1 1
(0, 1), (Z’ 1)
For (a, b)e A, T(a, b) = aAb. In B, the line
segments joining the points (g, 1 —«) and
(4t
4 4
-value 4 ; and extend it by symmetry. Finally, T is
defined to be 0 in the region C. It is not hard to see that
T is a continuous seminorm. But it is not saturated

(1, 0), (0, D

), for 0<a< % with the T

because T(l l) = leven if T(l l)— land
4’ 2 4 272/ 2

1 1

—< =,

4 2

Theorem 4.2. Let (x, o , g)be a fuzzy measure
space. Suppose the t-seminorm T is continuous and

saturated. If 7 e [9(X)satisfies the condition[Max],

then
[ annTe=an | nre
for every 4 < [0, 1]and Acd.

In [5], We shows that the fuzzy linearity for the
seminormed fuzzy integral holds from Theorem 4.2 and
fuzzy additivity of fuzzy measure g.

Now, we consider the extended concept of such
linearity.

Theorem 4.3. Let (x, 4, g be a fuzzy measure
space and let

Ty, he LX), Aed, ¥ se1([0,1]). Suppose
the #seminorm T is continuous and saturated. Then
the fuzzy linearity for the seminormed fuzzy integral of
the interval-valued function

S GATIV GATDIT
AL VA S s

holds if both 7, and 4, satisfy the condition[Max]
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and g is a fuzzy additive measure.

Proof. Without any loss of generality, we can assume
that A = X. Since g is a fuzzy additive measure, it is
clear that

I(ZIVZZ) Tg = f@ng\/fZZTg.
So, we only need to prove that
[GAWTe=7A[0Ta

Let 5, and , satisfy the condition[Max] and the ¢

—-seminorm T is continuous and saturated.
Using the Theorem 4.2, we have

[ 7 INDE 2 DTe
f([rf/\hf, r"TARTDTg

= [f(f/\hf)Tg, f(f/\ h*)Tg]
= [rfAfthg, r*/\fh*'l’g]
[», 7’+]/\[ fhf'l'g, fh*‘l’g]
=7’/\f

JGATE

hTg
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