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An On-Chip Differential Inductor and Its Use to
RF VCO for 2 GHz Applications

Je-Kwang Cho, Kyung-Suc Nah, and Byeong-Ha Park

Abstract—Phase noise performance and current
consumption of Radio Frequency (RF) Voltage-
Controlled Oscillator (VCO) are largely dependent
on the Quality (Q) factor of inductor-capacitor (LC)
tank. Because the Q-factor of LC tank is determined
by on-chip spiral inductor, we designed, analyzed,
and modeled on-chip differential inductor 1o enhance
differential Q-factor, reduce current consumption
and save silicon area. The simulated inductance is 3.3
nH and Q-factor js 15 at 2 GHz. Self-resonance
frequency is as high as 13 GHz. To verify its use to
RF applications, we designed 2 GHz differential LC
VCO. The measurement result of phase noise is —112
dBc/Hz at an offset frequency of 100 kHz from a 2
GHz carrier frequency. Tuning range is about 500
MHz (25%), and current consumption varies from 5
mA to 84 mA using bias control technique.
Implemented in 0.35-um SiGe BiCMOS technology,
the VCO occupies 400 um x 8§00 um of silicon area.

1. INTRODUCTION

The recent remarkable increase of wireless
communications systems has driven RF integrated
circuits to much more integration, while maintaining low

power, high performance, and low cost [1-3]. Among
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those, an integrated RF VCO is one of the most difficult
building blocks due to stringent phase noise requirement
of modern wireless communications. In order to achieve
low phase noise performance, LC-based VCOs have
been widely used in RF applications because of its
higher Q characteristic than ring-oscillator architecture
[4-6]. If the required phase noise specifications are to be
achieved, the Q-factor of on-chip spiral inductor should
be maximized since VCO phase noise performance is
highly dependent on the Q-factor of the LC tank. For
that reason, on-chip spiral inductor has been the main
subject of numerous researches {7]-[8].

In this paper, we present the modeling of an optimized
on-chip differential spiral inductor and its use to 2GHz
VCO in a 035um SiGe BiCMOS
technology. The LC tank consists of on-chip differential

differential

spiral inductor, 6-bit digitally controlled switched-
capacitors bank for coarse and wide tuning, and two p-n
junction diodes for fine tuning. A bias current control
technique is employed to guarantee stable phase noise
characteristic for the entire frequency band [9]. The
measurement results show well how the inductor
improves VCO performance and saves die area.

II. ON-CHIP DIFFERENTIAL INDUCTOR

The Q-factor of differential inductor is same as that of
single-ended inductor at low frequency. However, a
shorted inductor self-resonates fundamentally at the
quarter-wavelength frequency whereas a ditterential
transmission line self-resonates at the half-wavelength
frequency. This means that differential inductor self-
resonates at approximately two times higher frequency
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than single-ended inductor [10]. Therefore, Q-factor
difference between the two inductors increases as
operating frequency goes up. In addition, another
advantage is a reduction of chip area because of the
mutual magnetic coupling, which results in less substrate
loss at high frequency.

The layout and its equivalent model of octagonal
differential inductor are shown in Fig. 1 and Fig. 2,
respectively. Because spiral inductor dominates the Q-
factor of the LC tank, special care should be taken to
achieve high Q-factor inductor {11]. The unloaded Q-
factor of inductor is highly dependent on the series
resistance, so the metal width of the inductor is as wide
as 20 um. Inner diameter of the inductor should be large
not to generate eddy current on the inner metal traces.

Metal 3

Metal 4

R1

Caub Rsub1 Csub Rsub

Fig. 2. Equivalent model of differential inductor

The inductor uses 3um thick aluminum top metal and
has the Q-factor of 15 at 2 GHz operating frequency

differentially. The differential inductance value is 3.3 nH.
Summary of the geometry and EM-simulated equivalent
model are listed in Table 1 and Table 2, respectively. To
verify the superiority of differential characteristics to
single-ended counterparts, both Q-factor and self-
resonance frequency (SRF) are simulated, compared, and
shown in Fig. 3. The extent of Q-factor improvement is
about 36 % (from 11 to 15) at 2 GHz and SRF increases
from 11 GHz to 13 GHz.

Table 1. Geometry of the differential inductor

Outer Metal Line Metal
. . . , # of turns
diameter width spacing | thickness
300um 20um 2um 3um 3
Table 2. EM-simulated results of the inductor

Q@2GHz k L1 R1 Cc Ccl
15 057 | 1.03nH | 12Q | 33fF 1.6 fF
Cs Csub Rsub Csl Csubl | Rsubl

327 fF 431F | 497Q | 70fF 19F | 661 Q

Q-factor

/. SRF=11GHz

SRF=13GHz

Frequency [MHz]

Fig. 3. Comparison of Q-factor and self-resonance frequency
(SRF) between single-ended and differential inductor.

III. VOLTAGE-CONTROLLED OSCILLATOR
DESIGN

To demonstrate the usefulness of the modeled
differential inductor, we designed a simple 2GHz
differential LC VCO as shown in Fig. 4. The Cap. Bank
block in the schematic consists of digitally-controlled,
binary-weighted switched capacitors for coarse tuning,
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and PN junction diodes for fine tuning. Q1, Q2 provide
negative resistance for stable oscillation. The center port

of the differential inductor is connected to supply voltage.

The schematic of switched-capacitors bank and
varactor diodes is shown in Fig. 4 in detail. Analog
control signal, Vc, varies reverse bias voltage of the
varactor diodes so as to achieve fine tuning. The other
voltage signals are digital signals that turn on or off
binary-weighted N-MOSFET switches. When using
switched-capacitors in the LC tank, on-resistance, which
is connected to capacitor in series equivalently in on
state, must be small enough not to degrade the loaded Q
of the LC tank.

On-Chip
Differential inductor

Analog Cap. Bank Digital
Control,—" Y Control,
Ve 0-—?“_— V-V,
1
al
C2
Q, Q,
Ry Rs
VB IEE

Fig. 4. Schematic of the VCO

In the case of wide band VCO, oscillation amplitude
level varies because of the change of the Q-factor of the
LC tank. 6 bit digital signals, which control switched-
capacitors bank, also change the amount of tail current of
the VCO to obtain constant amplitude level across the
LC tank regardless of the operating frequency as shown
in Fig. 6. We designed VCO tail current to vary from 5
mA to 8.4 mA and unit current variation to be 53 uA.
Single-ended oscillation amplitude level is 1 V (zero-to-
peak), which is the optimum amplitude for low phase
noise under the condition of 2.8 V supply voltage.
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Fig. 5. Schematic of the Cap. Bank block
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Fig. 6. Bias current control scheme

IV. MEASUREMENT RESULTS

The VCO was fabricated using Samsung’s 0.35um
BiCMOS technology and the microphotograph is shown
in Fig. 7.

Fig. 7. Microphotograph of the VCO
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The operating frequency is varied by 6-bit digitally
controlled switched-capacitor bank for coarse tuning and
varactor diodes for fine tuning as shown in Fig. 8. Total
operating frequency is from 1.68 GHz to 2.18 GHz and
tuning range is as wide as 500 MHz (25%). The VCO
gain of bottom curve is much lower than-that of top
curve. This is because the contribution of the varactor
capacitance to the total capacitance reduces as switched-
capacitors are turned on one by one. The VCO gain of
top curve is 25 MHz/V and that of bottom curve is 12
MHz/V. Center frequency spacing between adjacent
frequency curves is also different with respeét to the
digital code because of the same reason.

The measured phase noise of the VCO is ~112 dBc/Hz
at an offset frequency of 100 kHz from a 1.8 GHz carrier
frequency as shown in Fig. 9. Out-band noise floor is
much lower than —140 dBc/Hz. Current consumption
varies from 5SmA to 8.4mA. The active area of the VCO
core is 400um X 800um.

Table 3 summarizes the measurement results.

Table 3. VCO measurement summary
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Fig. 8. Measured frequency characteristic

\Phase Noise 18 dB/ REF -5 dBc ~36.624 dic
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Fig. 9. Phase noise measurement

Item Measured Result
Operating Freq. 1.68GHz ~2.18GHz
Tuning Range 500MHz (25%)
VCO Gain 12MHz/V ~25MHz/V
Phase Noise -112dBc/Hz @ 100kHz
Output Power -3dBm ~ -4dBm
Current Consumption SmA ~ 8.4mA

V. CONCLUSION

As a building block of a single chip RF transceiver IC,
a 2-GHz low noise VCO is designed, implemented, and
measured. To achieve low phase noise performance, an
on-chip differential inductor for the use of LC tank is
designed, analyzed and modeled. The simulated
inductance is 3.3nH and Q-factor is as high as 15 at
2GHz. The measured phase noise is as low as —112
dBc/Hz at an offset frequency of 100 kHz from a 2 GHz
carrier frequency and tuning range is about 500 MHz
(25%). These results show the feasibility of true single
chip multi-band multi-mode RF transceiver IC on silicon.
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