DOI QR코드

DOI QR Code

WC-Co계 미세조직에 따른 CVD 다이아몬드 코팅막의 접착력 변화

Dependence of the Diamond Coating Adhesion on the Microstructure of WC-Co Substrates

  • 이동범 (호서대학교 신소재공학전공) ;
  • 채기웅 (호서대학교 신소재공학전공)
  • Lee, Dong-Beum (Department of Materials Science and Engineering, Hoseo University) ;
  • Chae, Ki-Woong (Department of Materials Science and Engineering, Hoseo University)
  • 발행 : 2004.10.01

초록

평균입자크기가 서로 다른 WC-Co계 모재위에 고온 열처리법과 화학적 에칭방법을 이용하여 다이아몬드 막을 코팅하고 압흔법을 통해 그 접착력(adhesion strength)을 평가하였다. $1450^{\circ}C$의 고온 열처리 방법에 의해 준비된 WC-Co 시편표면에서는 WC 입자가 성장하였으며, 그 결과 20$\mu$m 이상의 다이아몬드 막이 증착된 경우에도 100kg의 하중에서도 우수한 접착력이 얻어졌다. 그러나, 모재 표면입자의 과도한 입성장으로 시편 인선부에는 변형이 발생하였으며, 증착된 다이아몬드 막은 거친 표면조도를 보였다. 이와 비교하여, 화학적 부식의 경우에는 submicron 크기의 WC 입자를 제외하고, 2$\mu$m 이상의 WC 입자를 가지는 모재를 이용하여 10$\mu$m의 다이아몬드 코팅막을 증착시킨 경우에는, 60kg의 하중에서도 양호한 접착력이 유지되었다 특히, WC 입자가 클수록 접착력의 신뢰성이 대폭 향상되었다. 이는 수 $\mu$m 이내의 비교적 얇은 두께의 다이아몬드 막을 증착하는 경우 화학적 에칭방법이 시편 형상의 변형을 방지하고, 양호한 표면조도를 얻을 수 있어 고온 열처리 방식에 비해 효과적임을 의미한다.

The effect of microstructure of WC-Co substrates which have different WC grain sizes from submicron to 5 $\mu$m on the diamond-substrate adhesion strength was investigated. The substrates were pre-treated by two methods : chemical etching with Murakami's solution and subsequently with $H_2SO_4$, and thermal heat-treatment. The adhesion strength was estimated by degree of peeling after Rockwell indentation. Diamond films of 20 $\mu$m thickness deposited on the heat-treated substrates showed an excellent adhesion strength at the load of 100 kg, which ascribed to the large and elongated WC grains. However, the cutting edge of insert was deformed after heat treatment and the surface morphology of heat treated substrate strongly affected on the surface roughness of the deposited diamond films. On the contrary, the diamond film of 10 $\mu$m in thickness on the chemically etched substrates of average WC grain size over 2 $\mu$m showed good adhesion strength enough not to peel-off under a load of 60 kg. Especially, the substrate of average WC grain size over 5 $\mu$m exhibited much improved reliability of adhesion comparing with the substrate of average grain size under 2 $\mu$m. No substrate deformation was observed in this case after the chemical etching, which is more advantageous and more practical in terms of precious machining than the heat treatment case.

키워드

참고문헌

  1. T. Yashiki, T. Nakanura, N. Fujimori, and T. Nakai, 'Practical Properties of Chemical Vapor Deposition Diamond Tools,' Suif. and Coat. Tech., 52 81 (1992) https://doi.org/10.1016/0257-8972(92)90373-I
  2. M. Murakawa, S. Rakeuchi, H. Miyazawa, and Y Hirose, 'Chemical Vapor Deposition of a Diamond Coating onto a Tungsten Carbide Tool Using Ethanol,' Surf Coat. Tech., 36 303-10 (1988) https://doi.org/10.1016/0257-8972(88)90160-0
  3. Y. Liou, A. Inspektor, R. Weimer, D. Knight, and R. Messier, 'The Effect of Oxygen in Diamond Deposition by Microwave Plasma Enhanced Chemical Vapour Deposition,' J. Master. Res., 5 [11] 2305-12 (1990) https://doi.org/10.1557/JMR.1990.2305
  4. M. Kawarada, K. Kurihara, K. Sasaki, A. Teshima, and N. Koshino, 'Thick Diamond Film Synthesis by DC Plasma Jet CVD,' Sci. Tech. New Diamond, pp. 59-63, KTK Scientific Publishers (1990)
  5. K. W. Chae, Y. J. Baik, and D. Y. Kim, 'Dependence of the Diamond Coating Adhesion on the Microstructure of SiCBased Substrates,' Diamond and ReI. Mater., 8 1018-21 (1999) https://doi.org/10.1016/S0925-9635(98)00440-3
  6. E. J. Oles, A. Inspektor, and C. E. Bauer, 'The New Diamond-Coated Carbide Cutting Tools,' Diamond and ReI. Mater., 5 617 (1996) https://doi.org/10.1016/0925-9635(95)00347-9
  7. J. H. Kim, D. Y. Jung, and H. K. Oh, 'Thin Film Adhesion and Cutting Performance in Diamond-Coated Tools,' J. Kor. Ceram. Soc., 3 [2] 105-09 (1997)
  8. M. S. Kang, W. S. Lee, Y. J. Baik, K. W. Chae, and D. S. Lim, 'Synthesis of Nanocrystalline Diamond Film by Hot Filament CVD Method,' J. Kor. Ceram. Soc., 38 [I] 34-8 (2001)
  9. W. S. Lee, Y. J. Baik, and K. W. Chae, 'Diamond Thick Film Deposition in Wafer Scale using Single-Cathode Direct Current Plasma Assisted Chemical Vapour Deposition,' Thin Solid Films., 435 89-94 (2003) https://doi.org/10.1016/S0040-6090(03)00410-3
  10. B. S. Park, Y. J. Baik, K. R. Lee, K. Y. Eun, and D. H. Kim, 'Behavoir of Co Binder Phase During Diamond Deposition on WC-Co Substrate,' Diamond and ReI. Mater., 2 910-17 (1993) https://doi.org/10.1016/0925-9635(93)90249-2
  11. M. G. Peters and R. H. Cummings, 'Methods for Coating Adherent Diamond Films on Cemented Tungsten Carbide Substrates,' US Patent 5236740 (1993)
  12. W. S. Lee, Y. J. Baik, and K. Y. Eun, 'Fabrication Method for Diamond Coated Cemented Carbide Cutting Tool,' US Patent 5700518 Sep. 12 (1996)
  13. T. Okamura, 'CVD Diamond Coated Cutting Tools and Method of Manufacture,' US Patent 5618625 (1997)
  14. S. Kameoka, T. Ikeda, and T. Sato, 'Method for the Preparation of WC-Co Alloys and Hard Carbon-Layer Coated on WC-Co Alloys and their Coated Tools,' US Patent 5733668 (1998)
  15. P. George, M. William, J. Edward, D. Gerald, E. Charles, and Aharon, 'Diamond Coated Tools and Wear Parts,' US Patent 5585176 (1996)
  16. S. H. Yeo, W. S. Lee, Y. J. Baik, K. W. Chae, and D. S. Lim, 'The Growth Behavior of Surface Grains of WC-6%Co Alloy During Heat Treatment,' J. Kor. Ceram. Soc., 38 [I] 28-33 (2001)
  17. G. E. Spriggs, 'A History of Fine Grained Hardmetal,' Int. J. Metals & Hard Mater., 13 241-55 (1995) https://doi.org/10.1016/0263-4368(95)92671-6
  18. E. J. Oles and V. J. Cackowski, 'Performance Characteristics of CVD Diamond Cutting Tools,' J. Kor. Ceram. Soc., 2 [4] 203-11 (1996)