경화 모래의 파괴 특성에 대한 시료 및 입자의 크기 영향

Size Effect of Specimen and Aggregate on Fracture Characteristics of Cemented Sand

  • 발행 : 2004.09.01

초록

경화 모래와 같은 단단한 흙에서는 자주 파괴시의 응력이 실내실험을 통해 얻은 전단강도 보다 작을 뿐만 아니라 일반적인 해석방법이 적절하지 못한 경우를 보게된다. 여러 학자들은 이러한 현상이 일어나는 것은 흙속에 있는 균열이나 절리와 같은 불연속이 존재 하기 때문일거라 생각했고, 따라서 파괴역학이 이런 흙에대해서는 더 적절한 해석방법이 될 수도 있다고 생각 해왔다. 그러나 파괴역학의 개념을 도입하기에는 파괴 요소들이 재료의 구성뿐만 아니라 시료 그리고 입자의 크기에 크게 영향을 받기 때문에 어려움이 많이 있다. 본 연구에서는 경화모래의 파괴 특성에 시료와 입자의 크기가 미치는 영향을 기술한다. 실내실험 결과, 시료와 입자의 크기는 경화모래의 파괴 거동에 많은 영향을 미치는 것을 보여준다.

In the past it has been often observed that the shear stresses at failure are much smaller than the shear strength obtained from traditional laboratory tests and conventional analysis technique is inadequate in stiff soil, such as cemented sand. Many researchers have brought attention to the fact that the presence of flaws i.e. fissures, cracks, joints have a great effect on the strength and overall stress-strain behavior of such materials. They have thought that fracture mechanics may appropriately be adopted as a good tool for analysis of these materials. However, the use of fracture mechanics concept especially for cemented sands is faced with difficulties in obtaining relevant parameters, because fracture parameters and predictions are highly dependent on the material constituents and the size of specimens as well as the size of particles. This paper addresses the effects of sizes which include specimen and aggregate on fracture properties of cemented sand. The results of laboratory tests show that the sizes of specimens and particle have a great effect on the fracture properties such as nominal strength of cemented sand.

키워드

참고문헌

  1. Alqasabi, A. O. (1998), 'Fracture Behavior of Cemented Sand', Ph.D thesis, University of Colorado at Boulder
  2. Bazant, Z. P. (1984), 'Size Effect in Blunt Fracture: Concrete, Rock, Metal', Journal of Engineering Mechanics, ASCE, 110(4), pp.518-535 https://doi.org/10.1061/(ASCE)0733-9399(1984)110:4(518)
  3. Haberfield, C. M., and Johnson, I. W. (1989), 'Relationship Between Fracture Toughness and Tensile Strength for Geornaterials', Proc. of $12^{th}$ Int. Conf. of Soil Mechanics and Foundations, Rio DeJaneiro, Brazil, Vol.I, pp.47-52
  4. Iosipescu, N. (1967), 'New Accurate Procedure for Single Shear Testing of Metals', Journal of Materials, Vol.2, No.3, pp.537-566
  5. Mould, J. C., Jr. (1983), 'Stress Induced Anisotropy and the Evaluation of Multi-surface Elasto-plastic Material Model', Ph.D thesis, University of Colorado at Boulder
  6. Rizkallah, J. (1977), 'Stress-Strain Behavior of Fissured Stiff Clays', $9^{th}$. Int. Conf. on soil Mechanics and Foundation, Tokyo, Japan, Vol.1, pp.267-270
  7. ASTM Annual Standards (1997), 'Standard Test Method for Plane Strain Fracture Toughness of Metallic Materials', ASTM Designa-tion E399-74
  8. Skempton, A.W. (1964), 'Long-term Stability of Clay Slopes', Geotechnique, Vol.14, pp.77-101 https://doi.org/10.1680/geot.1964.14.2.77