References
- Fofonoff, P. and R.C. Millard, Jr. 1983. Algorithms for computation of fundamental properties of seawater. UNESCO Technical Papers in Marine Science, 44, 53
- Hishida, Y, A. Ishimatsu and T. Oda. 1997. Mucus blockade of lamellar water channels in yellowtail exposed to Chattonella marina. Fish. Sci., 63, 315-316 https://doi.org/10.2331/fishsci.63.315
- Ishimatsu, A., H. Maruta, T. Tsuchiyama and M. Ozaki. 1990. Respiratory, ionoregulatory and cardiovascular responses of the yellowtail Seriola quinqueradiata to exposure to the red tide plankton Chattonella. Nippon Suisan Gakkaishi, 56, 189-199 https://doi.org/10.2331/suisan.56.189
- Ishimatsu, A., M. Sameshima, A. Tamura and T. Oda.1996a. Histological analysis of the mechanisms of Chattonella induced hypoxemia in yellowtail. Fish. Sci., 62, 50-58 https://doi.org/10.2331/fishsci.62.50
- Ishimatsu, A., T. Oda., M. Yoshida and M. Ozaki. 1996b. Oxygen radicals are probably involved in the mortality of yellowtail by Chattonella marina. Fish. Sci., 62, 836-837 https://doi.org/10.2331/fishsci.62.836
- Kim, D.K., T. Okamoto, T. Oda, K. Tachibana, K.S. Lee, A. Ishimatsu, Y. Matsuyama, T. Honjo and T. Muramatsu. 2001. Possible involvement of the glycocalyx in the ichthyotoxicity of Chattonella marina (Raphidophyceae): immunological approach using antiserum against cell surface structures of the flagellate. Mar. Biol., 139, 625-632 https://doi.org/10.1007/s002270100614
- Lee, K.S., A. Ishimatsu, H. Sakaguchi and T. Oda. 2003. Cardiac output during exposure to Chattonella marina and environmental hypoxia in yellowtail (Seriola quinqueradiata). Mar. Biol, 142, 391-397 https://doi.org/10.1007/s00227-002-0955-x
- Nakamura A., T. Okamoto, N. Komatsu, S. Ooka, T. Oda, A. Ishimatsu and T. Muramatsu. 1998. Fish mucus stimulates the generation of superoxide anion by Chattonella marina and Heterosigma akashiwo. Fish. Sci., 64, 866-869 https://doi.org/10.2331/fishsci.64.866
- Oda, T., A. Nakamura, M. Shikayama, I. Kawano,A. Ishimatsu and T. Muramatsu. 1997. Generation of reactive oxygen species by raphidophycean phytoplankton. Biosci. BiotechnoL Biochem., 61, 1658-1662 https://doi.org/10.1271/bbb.61.1658
- Oda, T., A. Nakamura, T. Okamoto, A. Ishimatsu and T. Muramatsu. 1998. Lectin induced enhancement of superoxide anion production by red tide phytoplankton. Mar. BioL, 131, 383-390 https://doi.org/10.1007/s002270050331
- Okaichi, T., S. Nishio and Y Imatomi. 1982. In: Yuudoku Purankuton (Toxic Planktons), Japan. Soc. Sci. Fish., ed. Suisangaku series, 42, pp. 22-34
- Okaichi, T. 1989. Red tide problems in the Seto Inland Sea, Japan. In: Red tide: Biology, Environmental Science and Toxicology, Okaichi T., D.M. Anderson and T. Nemoto, eds. Elsevier, New York, pp. 137-142
- Piiper, J. 1998. Branchial gas transfer models. Compo Biochem. Physiol., 119A, 125-130
- Shimada, M., S. Kawamoto, Y. Nakatsuka and M. Watanabe. 1993. Localization of superoxide anion in the red tide alga Chattonella antiqua. J. Histochem. Cytochem., 41, 507-511 https://doi.org/10.1177/41.4.8383714
- Tanaka, K., Y. Muto and M. Shimada. 1994. Generation of superoxide anion radicals by the marine phytoplankton organism, Chattonella antiqua. J. Plank. Res., 16, 161-169 https://doi.org/10.1093/plankt/16.2.161
- Ultsch, G.R. and G. Gross. 1979. Mucus as a diffusion barrier to oxygen: possible role in O2 uptake at low pH in carp (Cyprinus carpio) gills. Compo Biochem. Physiol., 62, 685-689 https://doi.org/10.1016/0300-9629(79)90125-7