Synthesis of Nano Structured Silica and Carbon Materials and Their Application

계면활성제를 이용한 나노 실리카 및 카본 소재의 합성과 응용

  • Published : 2004.11.01

Abstract

Nano silica ball and nano carbon ball are developed commercially by template synthesis method. Adsorption of unpleasant smelling substances such as ammonia, trimethylamine, acetaldehyde and methyl mercaptane onto nano carbon ball with hollow macroporous core/mesoporous shell structures, nano carbon ball, was investigated and compared with that onto odor adsorbent materials, activated carbon, commercially available. The adsorption and decomposition of malodor at nano carbon ball exhibited superior than those onto activated carbon. The physicochemical properties such as mesopore size distributions, large nitrogen BET specific surface area and large pore volume and decomposition of malodor were studied to interpret the predominant adsorption performance. The nano carbon ball is expected to be useful in many applications such as deodorizers, adsorbent of pollutants.

주형합성법을 이용하여 메조기공(mesoporous pore)을 지닌 나노실리카 물질들과 나노카본볼의 대량생산법이 개발되었다. 암모니아, 트리메틸아민, 아세트알데히드 그리고 메틸메르캅탄과 같은 악취 물질들이 마크로기공 코어-메조기공 쉘(macro-porous core/mesoporous shell) 구조체인 나노카본볼에 흡착되는 현상이 상업용 탈취제인 활성탄과 비교 조사되었다. 나노카본볼에서의 악취의 흡착 및 분해는 활성탄에 비해 우수하게 관측되었고 촉매가 나노카본볼 내부에 첨착되면 더욱 악취 분해 특성이 증가되었다. 나노카본볼의 우수한 흡착 및 분해 특성을 이해하기 위해 물리화학적 특성인 균일한 기공, 넓은 표면적, 큰 기공 부피에 관한 기공 특성과 악취의 분해 현상이 연구되었다. 이러한 나노카본볼은 탈취제 분야에서 많은 응용성이 있을 것으로 전망된다.

Keywords

References

  1. N. Yoshizawa, Y. Yamada, T. Furuta, M. Shiraishi, S. Kojima, H. Tamai, and H. Yasuda, Coal-based activated carbons prepared with organometallics and their mesoporous structure, Energy & Fuels, 11, 327 (1997)
  2. H. Tamai, T. Yoshida, M. Sasaki, and H. Yasuda, Dye adsorption on mesoporous activated carbon fiber obtained from pitch containing yttrium complex, Carbon, 37, 983 (1999)
  3. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S. Beck, Ordered mesoporous molecular sieves synthesized by aliquid-crystal template mechanism, Nature, 359, 710 (1992)
  4. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, and J. L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc., 114, 10834 (1992)
  5. R. Ryoo, S. H. Joo, and S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phy. Chem., 103 (37), 7743 (1999)
  6. J. S. Yu and S. B. Yoon, Nanostructured carbon capsules with hollowcore/mesoporous shell structure, mater. Res. Soc. Symposium Proceedings, 728, 241 (2002)
  7. T. G. Lamond and H. Marsh, The surface properties of carbon-III, the process of activation of carbon, Carbon, 1, 293 (1963)
  8. H. Marsh and B. Rand, 'The process of activation of carbons by gasification with $CO_2$', Carbon, 9, 63 (1971) https://doi.org/10.1016/0008-6223(71)90144-8
  9. Z. Hu, M. P. Srinivasan, and Y. Ni, Preparation of mesoporous high-surface-area activated carbon, Adv. Mater., 12, 62 (2000)
  10. R. W. Pekala, Aerogels derived from multifunctional organic monomers, J. Non-cryst. Solids, 145, 90 (1992)
  11. H. Tamon, H. Ishizaka, T. Yamamoto, and T. Suzuki, Influence of freeze-drying conditions on the mesoporosity of organic gels as carbon pecursors, Carbon, 38, 1099 (2000)
  12. T. Kyotani, Control of pore structure in carbon takashi kyotani, Carbon, 38, 269 (2000)
  13. J. Ozaki, N. Endo, W. Ohizumi, K. Igurashi, M. Nakaharta, A. Oya, S. Yoshida, and T. Izulca, Novel preparation method for the production of mesoporous carbon fiber from a polymer blend, Carbon, 36, 1031 (1997)
  14. S. Iijima, Helical microtubules of graphitic carbon, Nature, 354, 56 (1991)
  15. H. Gaucher, Y. Grillet, F. Beginin, S. Bonnamy and R-J. M. Pelleng, Low temperature physical adsorption in well-defined multiwall carbon nanotudes, in fundamentals of adsorption 6 (Ed, F. Memier), Elsevier, 243 (1998)
  16. T. J. Bandosz, J. Jagiello, K. Putyera, and J. A. Schwarz, Pore structure of carbon-mineral nanocomposites and derived carbons obtained by template carbonization, Chem. Mater., 8, 2023 (1996)
  17. F. Caruso, M. Spasova, A. Susha, M. Giersig, and R. A. Caruso, Magnetic nanocomposite particles and hollow spheres constructed by sequential layering Approach, Chem. Mater., 13, 109 (2001)
  18. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna, and O. Terasaki, Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure, J. Am. Chem. Soc., 122, 10712 (2000)
  19. J. Lee, K. Sohn, and T. Hyeon, Fabrication of novel mesocellular carbon foams with uniform ultralarge mesopores, J. Am. Chem. Soc., 123, 5146 (2001)
  20. M. Kang, S. H. Yi, H. I. Lee, J. E. Yie, and J. M. Kim, Reversible replication between ordered mesoporous silica and mesoporous carbon, Chem. Commun., 1944 (2002)
  21. W. Stober, A. Fink, and E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Col, Interface Sci., 26, 62 (1968)
  22. G. Buchel, K. K. Unger, A. Matsumoto, and K. Tsutsumi, Novel pathway for synthesis of submicrometer-size solid core/mesoporous shell silica spheres, Adv. Mater., 10, 1036 (1998)