Hydrolytic Reactivity and Holographic Quantitative Structure-Activity Relationship Analyses on the Melanogenesis Inhibitory Activities of Alkyl-3,4-dihydroxybenzoate and N-Alkyl-3,4-dihydroxybenzamide Derivatives

Alkyl-3,4-dihydroxybenzoate와 N-Alkyl-3,4-dihydroxybenzamide 유도체들의 가수분해 반응성과 멜라닌 생성 저해활성에 관한 홀로그램(H) QSAR 분석

  • Sung Nack-Do (Division of Applied Biological and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Jung Hoon-Sung (Division of Applied Biological and Chemistry, College of Agriculture and Life Science, Chungnam National University) ;
  • Kim Sang-Jin (Department of Cosmetic Science, Daejeon Health Sciences College)
  • 성낙도 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 정훈성 (충남대학교 농업생명과학대학 응용생물화학부) ;
  • 김상진 (대전보건대학 화장품과학과)
  • Published : 2004.12.01

Abstract

Holographic quantitative structure activity relationships (HQSAR) between the melanogenesis inhibitory activities of alkyl-3,4-dihydroxybenzoate (A) and N-Alkyl-3,4-dihydroxybenzamide (B) derivatives were analyzed and discussed. The statistical results of HQSAR model for the activities showed the best predictability of the activities based on the cross-validated $r^2_{cv}\;(q^2=0.674),$ non-cross-validated, conventional coefficient $(r^2_{ncv}=0.936).$ The melanogenesis inhibitory activities and hydrolytic reactivity of (A) were slightly higher than that of (B) (A>B) and the activities depends upon the $R_1-substituents\;(R_1>R_2).$ It has been found using frontier molecular orbital (FMO) theory that the hydrolysis reactions of (A) and (B) proceeded to an orbital-controlled reactions, while the nucleophillc addition-elimination reactions $(Ad_{N-E})$ between LUMO energy of (A) and (B) and HOMO energy of water molecule are occurred.

일련의 Alkyl-3,4-dihydroxybenzoate (A)와 N-Alkyl-3,4-dihydroxybenzamide (B) 유도체들의 치환기($R_l$$R_2$) 변화에 따른 멜라닌생성 저해활성 관계들을 HQSAR 방법으로 분석하였다. 멜라닌생성 저해활성에 관하여 유도된 HQSAR 모델은 매우 양호한 예측성(cross-validated $r^2_{cv.},\;q^2=0.674)$과 적합성(non-cross-validated, $r^2_{ncv}=0.936)$을 나타내었다. 멜라닌생성 저해활성과 가수분해 반응성은 공히, (A)가 (B)보다 컸으며(A$R_l$-치환기가 $R_2$-치환기보다 저해활성에 의존적인 경향을 나타내었다$(R_l>R_2)$. 또한, 경계분자궤도(FMO) 이론에 따라 가수분해 반응은 (A), (B)의 LUMO와 물분자의 HOMO 사이에 강한 상호작용으로 orbital-control 반응인 친핵성 첨가-제거반응$(Ad_{N-E})$이 주로 일어나는 것을 알 수 있었다.

Keywords

References

  1. M. Yaar and B. A. Gilchrest, Melanocyte biology: Before, during , and after the Fitzpatrick Era, J. Invest. Dermatol., 122, 26 (2004)
  2. M. Mizoguchi, Melanocyte development: With a message of encouragement to young women scientists, Pigment Cell Res., 17(5), 533 (2004)
  3. H. Saito, K. Yasumoto, K. Takeda, K. Takahashi, H. Yamamoto, and S. Shibahara, Microphthalmia-associated transcription factor in the Wnt signaling pathway, Pigment Cell Res., 16(3), 261 (2003)
  4. K. W. Vance and C. R. Goding, The transcription network regulating melanocyte development and melanoma, Pigment Cell Res., 17(4), 318 (2004)
  5. C. Lin, L. Babiarz, F. Liebel, E. Price, M. Kizoulis, G. Gendimenico, D. Fisher, and M. Seiberg, Modulation of microphthalmia-associated transcription factor gene expression alters skin pigmentation, J. Inv. Dermatol., 119(6), 1330 (2002)
  6. S. S. Sulaimon and B. E. Kitchell, The biology of melanocytes, Veterinary Dermatol., 14, 57 (2003)
  7. Shimogaki, Tanaka, Tarnai, and Masuda, In vitro and in vivo evaluation of ellagic acid on melano-genesis inhibition, Int. J. Cosmetic Science, 22, 291 (2000)
  8. G. Prota, Melanins and Melnogenesis, Academic Press, Inc., 42 (1997)
  9. M. O. Masse, V. Duvallet, M. Borremans, and L. Goeyens, Identification and quantitative analysis of kojic acid and arbutine in skinwhitening cosmetics, Int. J. Cosmetic Science, 23, 219 (2001)
  10. D. I. Jang, B. G. Lee, C. O. Jeon, N. S. Jo, J. H. Park, S. Y. Cho, H. Lee, and J. S. Koh, Proceedings, 2nd scientific conference of the Asian Soc. of Cosmetic Scientists, 296 (1995)
  11. Funasaka, Chakraborty, Komoto, Ohashi, and Ichihashi, The depigmenting effect of $\alpha$-tocopheryl ferulate on human melanoma cells, British J. Dermatol., 141, 20 (1999)
  12. J. C. Espin, R. H. Veltman, and H. J. Wichers, The oxidation of lascorbic acid catalysed by pear tyrosinase, Physiologia Plantarum, 109, 1 (2000)
  13. T. W. Heritage and D. R. Lowis, In Rational drug design; novel methodology and practical applications: molecular hologram QSAR. Ch. 4., Parrill, A. L. and Reddy, M. R. (eds.) ACS Symposium Series No. 719, Washington, DC. (1999)
  14. S. J. Kim, Comparative molecular field analysis (CoMFA) on the me lanogenesis inhibitory activity of alkyl-3,4-dihydroxybenzoate and N-alkyl-3,4-di-hydroxybenzamide derivatives, Thesis of Ph. D degree, Graduate School of Paichai University, Daejeon Korea, 26 (2002)
  15. M. J. Dewar, E. G. Zolbisch, E. E. Healy, and J. P. Stewart, AM1: a new general purpose quantum mechanical molecular model, J. Am Chem Soc., 107, 3902 (1985)
  16. Tripos Associates, Inc., 1699 S. Hanley Road, Suite 303, St. Louis, MO. 63144-2913 U.S.A.
  17. W. D. Tong, R. Lowis, R. Perkins, Y. Chen, W. J. Welsh, D. W. Goddette, T. W. Heritage, and D. M. Sheehan, Evaluation of quantitative structure-activity relation ship methods for large scale prediction of chemicals binding to the estrogen receptor, J. Chem. Inf. Comput. Sci., 38, 669 (1998)
  18. L. Stahle and S. Wold, Multivariate data analysis and experimental design in biomedical research, Prog. Med. Chem., 25, 292 (1988)
  19. S. Wold, C. Albano, W. J. Dunn, U. Edlund, K. Esbensen, P. Geladi, S. Hellberg, E. Johanasson, W. Lindberg, and M. Sjostrom, In chemometrics: mathematics and statistics in chemistry multivariate data analysis in chemistry, Reidel, Dodrecht, Nethelands 17 (1984)
  20. G. Klopman, Chemical reactivity and reaction paths, Ch. 4., 55, John Wiely & Sons, New York (1974)
  21. I. Fleming, Frontier orbitals and organic chemical reactions, Ch 3., John Wiely & Sons, London (1976)
  22. G. Prota, Melanins and melnogenesis, Academic Press, Inc., 135 (1997)