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Abstract

We consider the simultaneous Bayesian estimation for the normal means 
based on different noninformative type hyperpriors in hierarchical model. 
We provide numerical example using the famous baseball data in Efron 
and Morris (1975) for illustration.
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1. Introduction

Bayesian methods have become increasingly popular in the theory and practice 

of statistics. This is partly due to the fact that even with little or no prior 

information, one can often employ noninformative priors to draw reliable inference. 

In practice, empirical and hierarchical Bayes methods are useful, especially in the 

context of simultaneous estimation of several parameters.

For example, agencies of the federal government have been involved in 

obtaining estimates of per capita income, unemployment rates, crop yields and so 

forth simultaneously for several state and local government areas. In such 

situations, quite often estimates of certain area means, or simultaneous estimates 

of several area means can be  improved by incorporating information from similar 

neighboring areas. Examples of this type are especially suitable for empirical 

Bayes (EB) and hierarchical Bayes (HB) analyses. 

EB and HB methods are being routinely used whenever there is a need to 
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"borrow strength" either for inference related to a particular parameter of interest, 

or simultaneous inference for several parameters. In particular HB methods are 

gaining increasing popularity in recent years partly due to overcoming the 

difficulty in calculation even if we use vague or noninformative priors. Thus, not 

surprisingly, over the years, a wide range of noninformative priors has been 

proposed and studied. One popular criterion for the development of such priors is 

to match asymptotically the posterior coverage probability of a Bayesian credible 

set with the corresponding frequentist coverage probability.

The outline of this paper is as follows. In Section 2, we introduce a matching 

prior for the hyperparameter in the normal HB model following Datta, Ghosh and 

Mukerjee (2000). This prior turns out to be different from the one proposed by 

Morris(1983). In Section 3, we derive expressions for the posterior means and 

variances with different hyperpriors in the normal HB setup. And in Section 4, we 

provide numerical example using the famous data of Efron and Morris(1975) for 

illustration.

2. Matching Priors in Hierarchical Model

We consider the following normal HB model

Ⅰ. Y i | θ i, μ, τ
2
∼
 ind N(θ i, σ

2), i=1,...,n ;

Ⅱ. θ i | μ, τ
2
∼
iid N(μ,τ 2), i=1,...,n ;

Ⅲ. π (μ, τ
2
) ∝ π( τ

2
)

where σ
2  is assumed to be known. For the hyperparameter (μ, τ

2
), we assign a 

hyperprior π(μ,τ 2)  in step (III). We assume μ  and τ
2  are independent with a 

uniform (-∞,∞)  prior for μ  and a suitable prior π(τ
2)  (to be determined 

below) on τ
2 . A uniform prior on μ  is widely accepted as a reasonable objective 

prior. We determine the prior π(τ 2)  via posterior and frequentist quantile 

matching of θ i . To this end we find an asymptotic expansion of the posterior 

distribution of θ i .

Let d = (y i,...,y n)
T  denote the observed value of Y = (Y 1,...,Yn)

T  and 

τ̂ 2  denote the residual maximum likelihood estimate of τ 2  obtained by 

maximizing the log residual likelihood. This is equivalent to minimizing h( τ 2)  

where
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nh( τ
2
)=

(n-1)
2

log ( τ
2
+σ

2
)+
1
2 ∑

n

i=1

(y i- y)
2

τ 2+σ2
.               (2.1)

Let π (θ i | τ
2, d )  denote the conditional posterior of θ i  given τ

2 , and 

π ρ(θ i |d )  denote the posterior pdf of θ i  under the prior π(τ
2
), where 

ρ(τ 2)= logπ(τ 2). By the Laplace approximation (see, for example, Kass and 

Steffey, 1989) it can be shown that

π ρ(θ i |d )= π(θ i | τ̂
2
, d )+

Dπ(θ i| τ̂
2
, d )

2nh 2
(2ρ 1-h 3h

-1
2 )

     +
D 2π(θ i| τ̂

2
, d )

2nh 2
+o(n -1)

           (2.2)

where

D=∂τ2/∂,ρ 1=D logπ( τ̂
2
),h k=D

k h( τ̂ 2),k=2,3,  Dkw( τ̂ 2)=Dkw(τ 2)| τ 2 = τˆ 2.

Let

G(θ
*
i |τ
2
, d )=⌠⌡

θ*i

-∞
π(θ i|τ

2
, d )dθ i

be the conditional posterior cdf of θ i . Also define q i(τ
2,α ;d ), the conditional 

posterior quantile function by

G(q i( τ
2
,α ;d ) | τ

2
, d )= 1-α.                      (2.3)

Let h i(π, τ̂
2
,α ;d )  be such that

P
π
{θ i> h i(π, τ̂

2
,α ;d )|d }= α+o(n

-1
).                  (2.4)

From (2.2)-(2.4) it follows that

h i(π, τ̂
2
,α ;d )= q i( τ̂

2
,α ;d )+

1
n
u(π)                   (2.5)

where u(π)  may depend on the prior π , in addition to α  and d , and is at most 

of the order O(1) . Let P τ
2(⋅)  denote the probability measure based on the joint 
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distribution of (Yi,θ i),i=1,…,n , as specified by (I) and (II) of the hierarchical 

model. We will now find an expansion of the probability P τ
2[θ i> h i(π, τ̂

2,α ;Y )]  

up to the order o(n - 1) . We develop this expansion based on a limiting argument 

as outlined in Ghosh (1994, p.84) or Datta and Ghosh (1995, p.40). To this end, for 

an alternative prior π(τ
2
)  we obtain an expansion of the posterior density 

π ρ(θ i |d ), where ρ(τ
2 )= log π(τ 2 ). As in (2.2), we get

π ρ(θ i |d )= π(θ i | τ̂
2
, d ) +

Dπ(θ i | τ̂
2
, d )

2nh 2
(2 ρ 1-h 3h

-1
2 )

+
D
2
π(θ i | τ̂

2
, d )

2nh 2
+ o(n

-1
)

.          (2.6)

From (2.2) and (2.6) it follows that

π ρ(θ i |d )= πρ (θ i |d )+
Dπ(θ i | τ̂

2, d )

nh 2
( ρ 1-ρ1)+o(n

-1).         (2.7)

From (2.4), (2.5), and (2.7) it follows that P π{ θ i> h i(π, τ̂
2,α ;d )|d }  simplifies 

to

α+
( ρ 1-ρ1)

nh 2
⌠
⌡

∞

h i(π, τ
ˆ 2,α;d )

Dπ(θ i | τ̂
2
, d )dθ i+ o(n

-1
)

which is same as 

α+
( ρ 1-ρ1)

nh 2
⌠
⌡

∞

q i( τ̂
2
,α;d )

Dπ(θ i | τ̂
2, d )dθ i+ o(n

-1) .

Hence E τ 2[P
τ
{ θ i > h i(π, τ̂

2,α ;Y )|Y }]  reduces to

α+
{ ρ 1(τ

2
)-ρ1 (τ

2
)}

nJ( τ 2)
E τ 2[⌠⌡

∞

q i(τ
2 ,α ;Y )

Dπ(θ i|τ
2
,Y )dθ i]+ o(n - 1)      (2.8)

since h 2= J( τ
2)+o(1), where J( τ 2)= (τ 2+α2) - 2/2 . 

From (I) and (II), note that π(θ i|τ
2
, d )=N(μ i(τ

2
, d ),V( τ

2
)), where 

μ i( τ
2, d )= y i-B( τ

2)(y i- y), V( τ 2)= σ2 (1-B(τ 2 ))+σ2B(τ 2)/n  and 
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B(τ 2)= σ 2 (σ 2+τ2) - 1.

From this it follows that q i(τ
2 ,α, d )= μ i(τ

2, d )+z α V(τ
2), where z α  is the 

1-αth quantile of a standard normal distribution. Hence it can be shown that 

⌠
⌡

∞

q i( τ
2
,α ;d )

Dπ(θ i|τ
2, d )dθ i  simplifies to

[
V'( τ

2
)z α

2V( τ 2)
+
μ i'( τ

2
)

V( τ 2 ) ]φ(z α)+o(1)

which in turn is given by

-[
B'( τ 2)z α

2{1-B( τ 2)}
+
B'( τ 2 )(y i- y)

σ 1-B( τ 2) ]φ(z α )+o(1),             (2.9)

where φ(z)  is the standard normal pdf. Since E τ
2[Y i- Y]= 0 , by (2.8) and 

(2.9) we get

E τ 2[P
π
{θ i> h i(π, τ̂

2,α ;Y |Y }]

   = α-
{ ρ 1 ( τ

2)-ρ1(τ
2 )}B'( τ

2 )z αφ(z α )

2nJ( τ 2){ 1-B( τ 2)}
+o(n -1)

            (2.10)

It follows from (2.10) that

      ⌠
⌡

∞

0
E τ 2[P

π
{θ i > h i(π, τ̂

2
,α ;Y )|Y }]π (τ 2 )dτ 2

      =α-
z αφ(z α)

2n
⌠
⌡

∞

0

{ ρ 1(τ
2)-ρ1(τ

2)}B'( τ
2)

J( τ 2 ){1-B( τ 2)}
π( τ 2 )dτ 2+o(n -1)    (2.11)

Now making π(τ
2
)  weakly converge to τ

2  as in Ghosh(1994) or Datta and 

Ghosh  (1995) we get from (2.11),

P τ 2[ θ i > h i(π, τ̂
2
,α ;Y )]= α+

z αφ(z α )

2n [
ρ 1 ( τ

2 )B'( τ 2)

J( τ 2){ 1-B( τ 2)} ]
+D{ B'( τ 2)

J( τ 2){ 1-B( τ 2)} }+ o(n
- 1
)

= α+
z αφ(z α )

2nπ(τ
2
)
D[ π( τ 2)B'( τ 2 )

J( τ
2
){1-B( τ 2)} ]+ o(n

-1)

 (2.12)
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The right hand side of (2.12) will be equal to α  to the order o(n
- 1
)  if and 

only if

π(τ 2) ∝
J( τ 2){1-B( τ 2)}

B'( τ
2
)

i.e.,

π(τ 2) ∝ τ2 (σ 2+τ2)
- 1

Remark: The prior given above is the unique matching prior. This prior is 

different from the uniform prior on τ
2  (especially for small τ

2) proposed by 

Morris(1983). Since it is bounded in τ 2, the resulting posterior is proper provided 

n＞3 .

3. Estimation of the Multivariate Normal Mean

This section is devoted to the HB procedures for estimating the multivariate 

normal mean. Now we consider the following HB model 

Ⅰ. Y i | θ i, μ, τ
2
∼
 ind N(θ i, σ

2), i=1,...,n ;

Ⅱ. θ i | μ, τ
2
∼
iid N(μ,τ 2), i=1,...,n ;

Ⅲ(a). π (μ, τ
2
) ∝ 1 ,

Ⅲ(b). π (μ, τ 2) ∝ τ2(σ 2+τ2)- 1 ,

where σ 2  is assumed to be known. 

First we consider the hyperprior π(μ,τ 2) ∝ 1  in step III(a) for the 

hyperparameter (μ,τ 2). Then the joint pdf of y , θ , μ  and τ 2  is given by 

f(y, θ,μ,τ
2
) ∝ exp [ - 1

2σ 2
( y- θ)' ( y- θ)]

×( τ 2 )
-
n
2 exp [ - 1

2τ 2
( θ-μ1)'( θ -μ1)]

          (3.1)

Now integrating with respect to μ , it follows from (3.1) that the joint 

(improper) pdf of y , θ  and τ
2  is
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f(y , θ ,τ 2)∝ (τ 2 )
n-1
2

exp [ - 1

2σ
2 ( θ-

1

σ
2 E

-1y)' E ( θ-
1

σ
2 E

-1y)]
exp [ 1σ 2 y'y-

1

σ4
y'E

-1y ]

      (3.2)

where E - 1= σ 2(1-B ) I n+σ
2Bn - 1J n  with J n= 11' . Hence, conditional on y  

and τ
2, 

f(θ ) ∝ N[ (1-B) y+By1 n, σ 2{ (1-B) I n+ B
n
J n}] .

Also, integrating with respect to θ  in (3.2), one gets the joint pdf of y  and τ 2  

given by

f(y,τ
2
) ∝ (σ

2
+τ

2
)
-
n-1
2
exp [- 1

2(σ 2+τ 2)
∑
n

1
(y i- y)

2].           (3.3)

Since B=σ2/ (σ 2+τ2) , it follows from (3.3) that the joint pdf of Y   and B  

is given by

f(y,B ) ∝ B
n- 5
2
exp [- B

2σ 2
∑
n

1
(y i- y)

2]                   (3.4)

The HB approaching like the above was first proposed by Strawderman(1971). It 

follow from (3.4) that

E(B|y ) =⌠⌡

1

0
B

1
2
(n-3)

exp [- B

2σ 2
∑
n

1
(y i- y)

2]dB

  ÷⌠⌡

1

0
B

1
2
(n-5)

exp [- B

2σ
2 ∑

n

1
(y i- y)

2]dB
             (3.5)

and

E(B
2
|y ) =⌠⌡

1

0
B

1
2
(n-1)

exp [- B

2σ 2
∑
n

1
(y i- y)

2]dB

  ÷⌠⌡

1

0
B

1
2
(n-5)

exp [- B

2σ 2
∑
n

1
(y i- y)

2]dB
            (3.6)
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Hence one can obtain

E(θ|y)=E[ y-B(y- y1)|y]= y-E(B|y)( y- y1)  
and

V(θ|y ) =E [V(θ|B, y )|y]+V[E(θ|B,y )|y]

=E [σ 2(1-B )I n+ σ2B
n
J n|y]+V[ y-B(y- y1)|y ]

= σ2 I n-σ
2E(B|y )( I n-

1
n
J n)+V(B| y )( y- y1)( y- y1)'

Next, we consider the hyperprior π (μ, τ 2) ∝ τ2(σ 2+τ2)- 1  given by III(b), 

which is  the type II Beta density for τ
2. It is easy to see that the joint pdf of 

y , θ ,μ  and τ
2  is given by

f(y, θ,μ,τ
2
) ∝(τ

2
)
- (

n
2
-1)

(σ
2
+τ

2
)
- 1

  ×exp [ - 1

2σ 2
( y-θ)'( y-θ)-

1

2τ 2
( θ -μ 1 )'( θ -μ1 )]

   (3.7)

Now integrating with respect to μ , it follows from (3.7) that the joint 

(improper) pdf of y , θ  and τ 2  is

f(y, θ,τ 2) ∝ (τ 2 )
-
n-3
2 (σ 2+τ2) - 1

exp[ - 1

2σ
2 ( θ-

1

σ
2 E

-1y)' E ( θ-
1

σ
2 E

-1y)]
exp [ 1σ 2 y'y-

1

σ4
y'E

-1y ]

      (3.8)

 

one gets the joint pdf of y  and τ 2  given by

f(y,τ 2)∝σ2τ 2(σ 2+τ2)
-
n+1
2 exp [- 1

2(σ
2+
τ
2
)

2

∑
n

1
(y i- y)

2]         (3.9)

The joint pdf of y  and B  is given by
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f(y,B) ∝ (1-B)B
n-5
2 exp [- B

2σ
2 ∑

n

1
(y i- y)

2]               (3.10)

It follows from (3.10) that

E(B|y ) =⌠⌡

1

0
(1-B)B

1
2
(n-3)

exp [- B

2σ
2 ∑

n

1
(y i- y)

2]dB

÷⌠⌡

1

0
(1-B)B

1
2
(n-5)

exp [- B

2σ 2
∑
n

1
(y i- y)

2]dB
          (3.11)

and

E(B 2|y ) =⌠⌡

1

0
(1-B)B

1
2
(n-1)

exp [- B

2σ 2
∑
n

1
(y i- y)

2]dB

÷⌠⌡

1

0
(1-B)B

1
2
(n-5)

exp [- B

2σ
2 ∑

n

1
(y i- y)

2]dB
        (3.12)

One can obtain V(B| y)  from (3.11) and (3.12) to obtain E(θ |y)  and V(θ |y).

4. Numerical Example

We now revisit the famous baseball data of Efron and Morris(1975). They 

considered the batting averages of 18 baseball players in 1970 after each had 

batted 45 times. Based on these batting averages, they estimated the players' 

batting averages for the remainder of the season. Actually the values Yi  are 

minor adjustments to the observed averages after 45 appearances given by 

Y i=0.4841+0.0659 45 arcsin ( 2 p̂ i-1) , rounded to three significant figures. 

The observed average actually is p̂ i; for example p̂ 1= 18/ 45= 0.400   for 

player 1 (Roberto Clemente). The arcsin transformation stabilizes variances, and 

the constants 0.4841 and 0.0659 are chosen so that the {Yi}  and { p̂ i}  have the 
same mean 0.26567 and standard deviation 0.0659. The same transformation 

θ i=0.4841+0.0659 45 arcsin (2 p i-1)  was made to the true value p i, being 

the proportion of success during the remainder of the season for batter i. The 

name of the players and other information about this problems are contained in 

Efron and Morris(1975).

We used for formulas (3.5) and (3.6) in case 1 having uniform hyperprior which 

is III(a). Also we used for formulas (3.16) and (3.17) in case 2 using the 

hyperprior which is III(b). Then eventually we calculate E(θ i|y )  and V(θ i|y). 
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The results are summarized in Table 1. 

What follows the true values θ i's refer to the baseball players' actual batting 

averages for the remainder of the season. Also, θ̂ i,HB1
 and θ̂ i,HB2

 are denoted 

by the two different HB estimates of θ i  respectively. The stand errors associated 

with θ̂ i,HB1
 and θ̂ i,HB2

 are denoted by s i,HB1  and s i,HB2  respectively.

It turns out that

( 18σ
2
)
- 1
∑
18

1
(y i-θ i)

2
=0.9345

    ( 18σ 2 ) - 1∑
18

1
( θ̂ i,HB1-θ i)

2=0.2937

    ( 18σ 2 ) - 1∑
18

1
( θ̂ i,HB2-θ i)

2=0.3295

The HB estimates serve well as point estimates. The HB1 estimates are slightly 

better than HB2 estimates overall. But two HB estimates are quite a comparable.

Table 1. The true value, the maximum likelihood estimates and the two HB 

estimates with standard errors.

n y i θ i θ̂ i,HB1 s i,HB1 θ̂ i,HB2 s i,HB2

1 0.395 0.346 0.305 0.049 0.318 0.046

2 0.375 0.300 0.299 0.048 0.310 0.044

3 0.355 0.279 0.292 0.047 0.301 0.043

4 0.334 0.223 0.285 0.046 0.292 0.041

5 0.313 0.276 0.278 0.045 0.284 0.040

6 0.291 0.273 0.271 0.045 0.274 0.040

7 0.269 0.266 0.264 0.044 0.265 0.039

8 0.247 0.211 0.257 0.044 0.256 0.039

9 0.247 0.271 0.257 0.044 0.256 0.039

10 0.247 0.232 0.257 0.044 0.256 0.039

11 0.224 0.266 0.250 0.045 0.246 0.040

12 0.224 0.258 0.250 0.045 0.246 0.040

13 0.224 0.306 0.250 0.045 0.246 0.040

14 0.224 0.267 0.250 0.045 0.246 0.040

15 0.224 0.228 0.250 0.045 0.246 0.040

16 0.200 0.288 0.242 0.045 0.236 0.041

17 0.175 0.318 0.234 0.047 0.225 0.042

18 0.148 0.200 0.226 0.048 0.214 0.044
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