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On The Product of Laplace and
Bessel Random Variables

Saralees Nadarajahl) + M. Masoom Ali2)

Abstract

The distribution of the product |X¥] is derived when X and Y are
Laplace and Bessel random variables distributed independently of each
other.

1. INTRODUCTION

For given random variables X and Y, the distribution of the product |XY] is
of interest in problems in biological and physical sciences, econometrics, and
classification. As an example in Physics, Sornette (1998) mentions:

- To mimic system size limitation, Takayasu, Sato, and Takayasu
introduced a threshold x_.- and found a stretched exponential truncating

the power-law pdf beyond x. Frisch and Sornette recently developed a
theory of extreme deviations generalizing the central limit theorem which,
when applied to multiplication of random variables, predicts the generic
presence of stretched exponential pdfs. The problem thus boils down to
determining the tail of the pdf for a product of random variables -+ "

The distribution of |XY] has been studied by several authors especially when
X and Y are independent random variables and come from the same family. For
instance, see Sakamoto (1943) for uniform family, Harter (1951) and Wallgren
(1980) for Student’s ¢ family, Springer and Thompson (1970) for normal family,
Stuart (1962) and Podolski (1972) for gamma family, Steece (1976), Bhargava and
Khatri (1981) and Tang and Gupta (1984) for beta family, Abu-Salih (1983) for
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power function family, and Malik and Trudel (1986) for exponential family (see
also Rathie and Rohrer (1987) for a comprehensive review of known results).

However, there is relatively little work of this kind when X and Y belong to
different families. In the applications mentioned above, it is quite possible that X
and Y could arise from different but similar distributions.

In this note, we study the distribution of |XY] when X and Y are
independent random variables having the Laplace and Bessel function distributions
with pdfs

Ax) = % exp (— Alx]) (1)
and
Ay) = e (%)) ®)
Va2 irm+1/2) 7\ b

respectively, for oo x< oo, co{ y< oo, A>0, b>0 and m > 1, where

K, (x)= £—1)" Yexp(— xt)dt

’”F( +1/2) f(

is the modified Bessel function of the third kind. The calculations involve the
Bessel function of the first kind defined by

x” S 1 )
]y(x): 2”F(V+1) ;0 (y-l-l)kk' (_ 4 )7

the modified Bessel function of the first kind defined by

L) = A5 (i)k
v STt D) 2 rDA 4 )

and the hypergeometric function defined by

k

T - R
Gla,b6,60= X (3 0, B

where (e),=e(e+1)---(e+ k—1) denotes the ascending factorial. We also need

the following important lemma.
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LEMMA 1 (Equation (2.16.8.9), Prudnikov et al., 1986, volume 2) For > () and
>0,

fooox ““lexp(— p/x)K (cx) dx
:JGT_ZF< CH_V)F( QEV)G(i |- ety o a-v. LL)

9 2 2 7 16
9 2 2 ’ 16
_|_ﬂ02aT+:1d]’(—u)]’(—u—cz)G(l—i—u1-#41/%z W%&L)

fﬁf(u)F(u—a)G(l—u 1+ﬂ72 Jiéz_z ’ ITéL)

Further properties of the above special functions can be found in Prudnikov et al.
(1986) and Gradshteyn and Ryzhik (2000).

2. CDF

Theorem 1 derives an explicit expression for the cdf of |XY] in terms of the
hypergeometric function.

THEOREM 1 Suppose X and Y are distributed according to (1) and (2),
respectively. The cdf of Z=|XY]| can be expressed as

o) =1= (Va2 (w1 Yo 5 E - di A

2° 2 27 165>
2.2
+(20) " (A2) ZMHF(_m)F(—ZWZ—l)G(l-I-m,%—I—m,l—l—m;lllfi—ly'%)
aC m 1 ﬁ}
+( ; 1)(25) AzF(m)G(l A
my m+1 i
[{(Vm2msir(m+ )} N

where (C denotes the Euler’s constant.
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PROQF: The cdf F(z)= Pr(|XY|<z) can be expressed as

F(z) = Pr(l)ﬂéquI) _ "
V2" " M+ 1/2) f-w{i‘ exo =45 )l "8 | 5 [}
1= Gz%mﬂlr(mﬂ/m fﬁmexp< Iy )MmK (H‘)dy

ST eyl B S e 3 G

Application of Lemma 1 shows that the integral in (4) can be expressed as

[

_ sz—lbmﬁ-l[v(m_i_%)(;(i’% i M)

2 © 27 1657
—2’"—Zb’”,izr(m)1imr(w)G(j | — 1 A2 )
w0 2 16b2 -
+9 Dy = )2) 2m+1F(—m)F(—Zm—l)G(l-l—m,%-i—m,l-l—m;iliG—b%)
+2 71573zl (m) lirglf(w)G<1— R fﬁ)
— m—1zg m+1 1 1 i_ 1. /1222
— Va2l [(m—l— )G(Z,z m,2,16b2)
3 222
422702 (m) 11m{—F(w)+2F(w—1)}G< -l 16b2)
2.2
+2 Uy = m(Q2) 2m+1F(—m)F(—2m—1)G<l+m,%-l—m,l—l—m; f6’22)

where [(()) and J(—1) are interpreted as limits and the gamma function for
negative numbers is defined through the relation [(1— w)I(w)= z/(sin (7w))-
The result of the theorem follows by noting that the limit of — ["(w)+ 21 (w—1)
is 3C—2, where (C denotes the Euler’s constant. Hl

Using special properties of the hypergeometric function, one can derive simpler
forms for the distribution of |XY| when g takes half integer values.
This 1is illustrated in the corollary below.
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COROLLARY 1 If m = 3/2 5/2 7/2, 9/2, 11/2 then (3) reduces to

F(2)= —1/8»{—8y—41,(2v)y—31,(2v)y*C+ 21,(2v)y* — 4],(2v)y— 3],(»)¥*C
+ 27,(2v)y° + 871 (2y) + 61,(23)y*C — AL (2v)y* + 8],(2y) + 6], (23)y*C
—47,(29)y%},

F(z)= —1/(96v){—96y—801,(2y)y— 451,(2)y*C + 301,(23)y"* — 807, (23)y
—451,(2)v°C+ 30 J,(23)y* + 1281, (2v) + 721,(23)y*C — 32 1,(2)»*
+91,(29)y* C—61,(2v)v" + 128],(2y) + 72],(2)v* C — 64],(23)y°
— 97,29y C+ 67,2y},

F(2)= —1/(960){— 960y — 10561,(2y)y — 4951, (23)y*C+ 2981,(2y)y* — 151, (2y)y°C
+107,(2v)y° — 10567, (23)y — 495],(2v)v* C + 3627, (23)v* + 15],(23)y°C
—107,(2)y° + 1536 1,(2y) + 7201, (2v)y*C — 1601,(2y)y* + 1501, (2»)y*C
—1007,(2v)y"* + 15367,(2y) 4+ 7207,(2y)v*C — 800],(23)y* — 150, (2v)y*C
+1007,(2v)y"},

F(z)= —1/(53760 v){ — 1120 J,(23)y° + 23626 Jo(2v)v> + 154341,(2v)y* — 5121, (2y)y*
— 69541, (2y)y° — 532487, (2y)y° + 14667, (2)v* — T01,(2y)y° — 707,(2v)°
— 71424 1,(2y)y— 71424 ], (29)y— 292951,(2y)v* — 16801,(23)y°C
—292957,(2)v*C + 16807,(2)y°C + 1051,(2v)y*C — 108157, (2y)»*C
+ 1057, (2y)¥5C + 403201, (2y)v*C + 403207, (2y)y*C + 108151, (2y)v*C
+ 11207,(2v)y° + 983041, (2y) — 53760y + 983047, (2y)},

F(z)= —1/(967680y){19660801;(2y) 4+ 1966080 J,(2y) — 967680y + 4830427, (2y)y*
—296187,(2)y° + 126,(23)y" + 2279341, (2y)y* C+ 4536 1,(2v)y* C
— 2279347, (2)y* C + 45367, (2)y° C + 7257601, (23)y*C + 725760],(2)y*C
— 5471551,(2y)y*C — 436591,(2v)y° C — 1891, (23)y" C — 547155],(2v)v*C
+ 436597, (23)y° C — 1897,(23)y" C + 285941,(23)y° — 11013127, (23)y>
+ 1642447, (29)v" + 2464981, (2v)v* + 126 1,(2v)y" — 30241, (2y)y°
— 14822401,(2y)y— 30247, (2v)y® — 14822407, (2y) v+ 1336321, (2y) >
— 1396681(2y) "},

where y=V Az/b and C denotes the Euler’s constant.
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Figure 1. Plots of the pdf of (3) for A1=1, »=1 and m=2,3,5,10.

Figure 1 illustrates possible shapes of the pdf of (3) for 1=1, b=1, and a
range of values of ;. Note that the shapes are unimodal and that the value of
m largely dictates the behavior of the pdf near z= ).
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