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Determinacy on a Maximum Resolution 

in Wavelet Series
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Abstract

Recently, an approximation of a wavelet series has been developed in 
the analyses of an unknown function. Most of articles have been studied 
on thresholding and shrinkage methods for its wavelet coefficients based 
on (non)parametric and Bayesian methods when the sample size is 
considered as a maximum resolution in wavelet series. In this paper, 
regardless of the sample size, we are focusing only on the choice of a 
maximum resolution in wavelet series. We propose a Bayesian approach 
to the choice of a maximum resolution based on the linear combination of 
the wavelet basis functions.
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1. Introduction

Suppose that a nonparametric regression model is as follows

yi = g (xi ) + {i   for i = 1, ..., n,                     (1)

where a function, say g, is any function in L   2  space and the errors, say 

{i∼N(0,σ2 ) , are independent variables, and xi [a,b] where a, b R . The 

assumption of the function can be made weaker than that of traditional methods, 
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using a wavelet series as an approximation to the function 

g (x ) Σ
k Z

s0 (k )φ0(k ) (x ) + Σ
j = 0

m

Σ
k Z

dj(k )ψj(k ) (x )                 (2) 

for m  given (Müller and Vidakovic, 1999).

Suppose that the shape of the function is unknown. If the choice of a maximum 

resolution, say m  from (2), depends on a sample size, then in Bayesian methods 

the estimation of the function has a critical drawback. For an example, if the 

function is smooth, that is, the smooth part (or a lower maximum resolution 

required) from (2) represents the function, and the sample size is so large, then 

the Bayesian methods cause substantially computational "burns". That is, there are 

so many basis functions which are negligent.

To select a maximum resolution, we apply the Bayesian method proposed by 

Smith and Kohn (1997) to a wavelet series and modify the prior distribution of 

the coefficients in the wavelet series. That is, by replacing the regression spline 

by the wavelet series which is a linear combination of two basis functions called 

the father wavelets, say φ, and the mother wavelets, say ψ  (Daubechies, 1992), 

the form (2) is a linear model in the wavelet coefficients. We cannot, however,  

estimate the coefficients in according to least squares, because sometimes the 

design matrix which consists of the wavelet functions is singular and the 

estimates are poor. In this paper, we are focusing only on the choice of the 

maximum resolution based on the Bayesian method modified. This approach is 

useful for multidimensional cases in which unknown functions' shapes may be 

unknown.

Section 2 is devoted to explain maximum resolution selection and estimation for 

a function in a wavelet series. Simulated examples are showed in Section 3, and 

the conclusion is given in Section 4.

2. Maximum Resolution Selection in a Wavelet Series

2.1 Wavelet series

For suitable wavelet basis functions, φ  and ψ, which are as follows

φj (k ) (x ) = 2j/2 (2jx − k )  and ψ(j)k (x ) = 2j/2ψ (2jx − k )  

for dilation j  and translation k , the wavelet series from (2) have the orthogonal 

property
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s0(k ) = g (x )φ0k (x )dx  and d(j)k = g (x )ψ(j)k (x )dx .   

Intuitively, the first part from (2) is used to represent a smoothing function and 

the other from (2) is related to localization.

2.2 Range of translation parameters

We consider minimum phase Daubechies wavelets with compact support which 

ensure a finite range of values. The supports of the scaling function φ (x )  and 

the wavelet function ψ (x )  are [0   ,  2N − 1 ] and [− N     ,  N− 1 ], respectively, where 

N  is the number of vanishing moments. We can easily calculate the supports of  
φj (k ) (x ) ,  ψ(j)k (x )  and the range of the translation parameter  k   for φj (k ) (x )  

and ψ(j)k (x ) . The supports of  φj (k ) (x )   and  ψ(j)k (x )   are

k

2j
,

2N − 1 + k

2j  and 
1 − N + k

2j
,
N + k

2j  .

Thus, given x [a,b], we can calculate the range of k  based on the supports 

corresponding to the functions  φj (k ) (x )  and ψ(j)k (x )   intersecting  x [a,b],

where  .

2.3 Bayesian approach to the choice of a maximum resolution

In this section we describe a Bayesian method based on the method proposed 

by Smith and Kohn (1997) for selecting a maximum resolution in a linear 

regression as it forms the basis of the wavelet approximation to the nonparametric 

function. For notational convenience, rewrite (2)

g (x|m ) Σ
k Z

s0(k )φ0(k ) (x ) + Σ
j = 0

m

         Σ
k Z

dj(k )ψj(k ) (x )H (m≥ 0 )         (3)

for m =− 1, 0, 1, ...,m0  , where H ( )  is an indicator function. Let M  be a 

family of linear regression models all have the same dependent variables such that 

for m M  
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y =W m    θ m + {                                   (4)

where y = (y1, ..., yn )T  is an n 1  row vector of dependent variables, W m  is an 

n q (m )  design matrix of regression parameters, φ 0 (k )  and/or ψ j (k ) , 

θ− 1 = s0 (k )  or θ m = s0(k ), d0(k ), ..., dm(k )  is a q (m ) 1  column vector, and the 

error vector {∼N(0,σ2I n ). If, in variable selection, the design matrix consists of 

q  independent variables, there are all 2q  possible subsets. In the problem of 

resolution selection, however, there are only m0 + 2  possible subsets from (4).

Since the wavelet basis functions are orthornomal, we can make an assumption 

such that I m =W   Tm  W m  . To choose a maximum resolution, we employ the 

following Bayesian procedure :

  

Step 1 . The prior distribution for θ m  |σ2  ,m   is 

θ m|σ2,m    ∼   N(0,σ2I m)  .                        (5)

Step 2 . The prior distribution for σ2|m   is (Box and Tiao, 1973)
     p (σ2|m)  ∝  σ− 2  .                                (6)

Step 3 . The noninformative prior distribution for m  is 

p (m)         ∝       
1

#(M)
                               (7)

where # (M )  is the number of elements in the family M  . From (5)-(7), and the 

likelihood function, the posterior probability of a model m  is given by   

p (m|y)  ∝  p (y|m)p (m)

 ∝   
σ2 θ m

p (y|θ m,σ2,m)  p (θ m |σ2,m)d θ m  p (σ2 )d σ2

 ∝  2− q (m)/2S(m)− n/2                  ,

           (8)

where S (m ) = y Ty−
1
2

y TW mW    Tm      y  .

2.4 The posterior mode for the choice of a maximum resolution

Since the number of models for resolutions is not large ( less than 20 ), that is, 

a model with a maximum resolution m  (− 1≤ m≤ m0 )  is including the 
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submodel with the resolution m− 1 , use of the Gibbs sampler for the variable m  

provided by Smith and Kohn (1997) is not required. So from (8) we can simply 

calculate all posterior probabilities for the family M. We select a maximum 

resolution corresponding to a posterior mode from the posterior probabilities. 

2.5 Estimation for a function

To estimate a function, we propose an MCMC algorithm. Given a maximum 

resolution, the priors of all parameters of interest are same as the above priors 

except for the prior of each coefficient which is a normal distribution with zero 

mean and variance τ.  Proposed MCMC scheme is as follows:

1. Generate σ2  from the complete inverse gamma conditional distribution.

2. Generate τ  from the complete inverse gamma conditional distribution.

3. Generate s0k  from the complete normal conditional distribution.

4. Generate djk  from the complete normal conditional distribution.

All Steps are Gibbs samplers and initial values are obtained by random values 

from each prior distribution. 

3. Simulated Examples 
  

We apply our Bayesian approach to a smooth function g (x ) =  cos (2.2π/3 + 8x )  

for x [  0  , 1 ]  with two different sample sizes, 50 and 2,000 , and two different 

standard deviations, 0.02 and 0.5 in the simulation study. Also, to implement 

Monte Carlo simulation, we generate 1,000 dataset. 

Simulation results are given in [Table 1], [Table 2], and [Figure 1]-[Figure 8].

4. Concluding Remarks

When running the MCMC algorithm to the cosine function of the above example 

given a maximum resolution, the estimated posterior functions of the wavelet 

series are approximated to the function well regardless of maximum resolutions, 

m = 0  or 1  because the cosine function is a smoothing function. It is more 

efficient for selecting a resolution than for using a sample size as a maximum 

resolution in MCMC.

In this paper, however, the results of an irregular function with higher 

maximum resolution which are not presented were underestimated since the 
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penalty part of the equation (8) for the number of coefficients, that is, as 

resolution increasing, the number of coefficients is increasing.

We conclude that the maximum resolution is affected by the shape of a function 

which will be estimated regardless of sample sizes. 
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[Table 1] For 1,000 dataset with g (xi ) =  cos (2.2π/3 + 8xi ),  i = 1, ..., n 

where xi = (i − 0.5 )/ n  and { i∼ iid   N(0,σ2 ).

n  σ
Resolution (m )

-1 0 1 2 3 4 5 6 7 8 9 10

50
0.02 0 1000 0 0 0 0 0 0 0 0 0 0

0.5 0 752 247 0 1 0 0 0 0 0 0 0

2000  
0.02 0 1000 0 0 0 0 0 0 0 0 0 0

0.5 0 1000 0 0 0 0 0 0 0 0 0 0

[Table 2] For one dataset estimation with g (xi ) =  cos (2.2π/3 + 8xi ),  i = 1, ..., n 

where xi = (i − 0.5 )/ n  and { i∼ iid   N(0,σ2 ).

n σ
 mse = 1

n Σ
i = 1

n

(yi− ŷ i )
2

m = 0 m = 1

50
0.02 0.0050 0.0975

0.5 0.1830 0.3515

2000
0.02 0.0054 0.0056

0.5 0.2648 0.2750



Determinacy on a Maximum Resolution in Wavelet Series 473

[Figure 1] Estimated posterior  mean function : m = 0 , n = 50  , σ = 0.02 .

.

[Figure 2] Estimated posterior  mean function : m = 1 , n = 50  , σ = 0.02
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[Figure 3] Estimated posterior  mean function : m = 0 , n = 50  , σ = 0.5  

[Figure 4] Estimated posterior  mean function : m = 1 , n = 50  , σ = 0.5
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[Figure 5] Estimated posterior  mean function : m = 0 , n = 2000  , σ = 0.02

[Figure 6] Estimated posterior  mean function : m = 1 , n = 2000  , σ = 0.02
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[Figure 7] Estimated posterior  mean function : m = 0 , n = 2000 , σ = 0.5

[Figure 8] Estimated posterior  mean function : m = 1 , n = 2000 , σ = 0.5
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