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Abstract

The paper focuses primarily on the standard linear multiple regression 
model where the parameter of interest is a ratio of two regression 
coefficients. The general model includes the calibration model, the 
Fieller-Creasy problem, slope-ratio assays, parallel-line assays, and 
bioequivalence. We provide an orthogonal transformation (cf. Cox and Reid 
(1987)) of the original parameter vector. Also, we give some remarks on 
the difficulties associated with likelihood based confidence interval.
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1. Introduction

There is a large class of important statistical problems which can be broadly 

described under the general heading of inference about the ratios of regression 

coefficients in a general linear model. The calibration model,  ratio of two means 

or the Fieller-Creasy problem, slope-ratio assay, and parallel-line assay are 

included in this class. The general nature of this problem was recognized several 

decades ago, as documented for example in the excellent treatise of Finney (1978). 

The frequentist approaches for these problems have typically confronted with 

serious difficulties. As an example, confidence intervals for ratios of two normal 

means based on Fieller's pivot (1954) may fail to exist in many circumstances. On 

other occasions, a confidence set for this ratio may be the union of two disjoint 
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unbounded intervals, and in extreme situations, may even be the entire real line. 

The same phenomenon occurs as in the other problems described above.

A second general approach is one based on likelihoods. We discuss the profile 

likelihood, and its variants such as conditional profile likelihood (Cox and Reid, 

1987; Barndorff-Nielsen, 1983) or adjusted profile likelihood (McCullagh and 

Tibshirani, 1990). 

In Section 2, we find the orthogonal transformation of the original parameter 

vector in the sense of Cox and Reid(1987). In Section 3, we first find the profile 

likelihood for the parameter of interest, then find various adjustments to this same 

based on this orthogonal transformation. In Section 4, we find also an integrated 

likelihood following the prescription of Berger, Liseo and Wolpert (1999). The 

adjusted likelihood as well as integrated likelihood are quite similar, and we point 

out same of the difficulties associated with likelihood based confidence interval. 

The proof of a theorem is deferred to the Appendix.

2. The Orthogonal Transformation

Consider the general regression model 

             yi = Σ
j = 1

r

j xij + {i   ,   (i = 1, ..., n )                       .1)

where the errors {i's are iid N(0,σ2 ). Here j (−∞,∞ )  for j≠ 2 , while 

2 (−∞,∞) − 0  and the parameter of interest is θ1 = 1/ 2  . We write 

y= (y1, ..., yn )T, xi = (xi1, ..., xip)
T, (i = 1, ..., n ),   XT = (x1, ...,xn), 

= ( 1, ..., n )T, and,  e = ({1, ..., {n )T  . Thus the model can be rewritten in 

matrix notation as Y = X + e  , where we assume that the rank(X) = r < n  .

First we introduce a transformation of the parameter vector (        ,σ )  which 

results in the orthogonality of θ1  with the remaining nuisance parameters. We 

begin with the Fisher information matrix 

                     I( ,σ ) =
((s j l )) 0

T

0 2n
                          (2.2)

where sjl = Σ
i = 1

n

x i j   x i l  ,  (j, l = 1, ..., r ) .  Consider the transformation

       
1 = θ1θ2h (θ1 )   ,    2 = θ2h (θ1 )   ,    j = θj − θ2gj (θ1 )  ,  j = 3, , .., r

σ = θr+ 1         .
        (2.3)

Then the Jacobian matrix is given by
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     J=

θ2 θ1h (θ1 ) + h (θ1 ) θ2h (θ1 ) − θ2g3 (θ1 ) − θ2gr (θ1 ) 0
θ1h (θ1 ) h (θ1 ) − g3 (θ1 ) − gr(θ1 ) 0

0 0 1 0 0

0 0 0 1 0
0 0 0 0 1

       (2.4)

Theorem 1.  Let gj (θ1 ) = h (θ1 )(a j 1θ1 + a j 2 )  ,   j = 3, ..., r, where

             
a31 a32

ar1 ar2

   = 
s33 s3r

s3r srr

− 1

 
s13 s23

s1r s2r

  .               (2.5)

Then parametric orthogonality holds by choosing

h (θ1 ) = Q − 1 /   2 (θ1 ) , 

where Q− 1/  2 (θ1) = c11θ
  2
 1 + 2c12θ1 + c22  , c11 = s11 − Σ

j = 3

r

s1j a j 1  , 

c12 = s12 − Σ
j = 3

r

s1j a j 2  , and c22 = s22 − Σ
j = 3

r

s2j  a j 2  . The proof of this theorem is 

deferred to the Appendix. Based on this transformation and writing 

C=








c11 c12

c12 c22
, it follows from (2.1)-(2.4) that the reparametrized Fisher 

information matrix is given by

                   I(θ ) =
1

θ2
r+ 1

θ2
2|C|2

Q 2 (θ1 )
0 0 0 0

0 1 0 0 0
0 0 s33 s3r 0

0 0 sr3 srr 0
0 0 0 0 2n

              (2.6)

Remark 1.  If we write X TX=
A 1 A 2
A T2 A 3

 , where A 1 =








s11 s12

c12 c22
, 

A 2 =








s13 s1r

s23 s3r
, and A 3 =









s33 s3r

sr3 srr

 , then from (2.4), it is easy to see that 

C= A 1 −A 2A − 1
3 A T2 . Also, since rank(X  TX) = rank(X) = r  , it is positive 

definite. Then C is also positive definite.
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3. Likelihood Analysis

We begin with the derivation of the profile likelihood of θ1  . This is done in 

several steps as following. First writing  ̂= ( 1̂, ..., r̂)
T  as the unrestricted MLE 

of  and SSE = (y− X  ̂ )T(y− X ̂ )  , one can write the likelihood 

     L( 1, 2, ..., r,σ )     ∝     σ− n     exp −
1

2σ2
SSE + ( − ˆ )TX TX( − ˆ )      (3.1)

Next, using a basic identity of quadratic form 

( −  ̂)TX TX( − ˆ )

 = c11( 1 − 1̂ )
2 + 2c12 ( 1 − 1̂ )( 2− 2̂ ) + c22( 2− 2̂ )

2 +u TA 3u

 = c11( 2θ1 − 1̂ )
2 + 2c12( 2θ1 − 1̂ )( 2− 2̂ ) + c22( 2 − 2̂ )

2 +u TA 3u

where u= ( 3 − 3̂, ..., r − r̂ )
T  . Hence for fixed θ1, 2  and σ  , the MLE of k  

is k̂  for every k = 3, ..., r  , and these do not depend  θ1, 2  and σ. Hence, the 

profile likelihood of  θ1, 2  and σ  is given by

LPL(θ1, 2,σ ) 

      ∝  σ− n  exp −
1

2σ2
SSE + c11 ( 2θ1 − 1̂ )

2 + 2c12 ( 2θ1 − 1̂ )( 2 − 2̂ ) + c22 ( 2− 2̂ )
2  

  

(3.2)

It follows from (3.2) that for fixed  θ1  and σ, the MLE of  2  is 

         2̂ (θ1,σ ) = 2̂ (θ1 ) = Q− 1/  2 (θ1 )[θ1 (c11 1̂ + c12 2̂ ) + c12 1̂ + c22 2̂ ]      (3.3)

Also, after some algebraic simplifications, 

 
c11 ( 2̂ (θ1 )θ1 − 1̂ )

2 + 2c12 ( 2̂ (θ1 )θ1 − 1̂ )( 2̂ (θ1 ) − 2̂ ) + c22 ( 2̂ (θ1 )− 2̂ )
2

          =│C│2 ( 2̂  θ1 − 1̂ )
2/Q(θ1 )

   (3.4)

This leads to

       LPL(θ1,σ )    ∝     σ− n  exp −
1

2σ2
SSE +│C│2 ( 2  ̂  θ1 − 1̂ )

2/Q(θ1 )    .    (3.5)
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Now, for fixed θ1  , the MLE of σ  is  

       σ̂ (θ1) = n− 1/  2  [ ]SSE+│C│2( 2  ̂  θ1− 1̂ )
2/Q(θ1 )  

− 1/  2
  .              (3.6)

Thus, the profile likelihood of θ1  is given by

       LPL(θ1 )      ∝    [ ]SSE+│C│2 ( 2  ̂  θ1 − 1̂ )
2/Q(θ1)  

−  n /  2
  .                 (3.7)

Remark 2. It may be noted from (3.7) that as │θ1│→   ∞, 
( 2  ̂  θ1 − 1̂ )

2/Q(θ1 )  →  2̂  / c11. Thus LPL(θ1 )  is bounded away from 0  as 

│θ1│→   ∞  . This immediately leads to the fact that any likelihood-based 
confidence interval for θ1  can potentially the entire real line. For the ratio of 

normal means problem, this fact was first observed by Liseo (1993) for known σ  , 

and subsequently by Yin and Ghosh (2000) for unknown σ  .

Remark 3. Due to orthogonality of θ1   with (θ2, ..., θr   , θr+ 1 ) , from (3.7) and (2.6), 

the conditional profile likelihood (CPL) proposed by Cox and Reid (1987) of θ1  is 

given by

           
LCPL(θ1 )  ∝  LPL(θ1 )│θ̂ r+ 1│− r

 ∝  [ ]SSE+│C│2 ( 2  ̂  θ1 − 1̂ )
2/Q(θ1 )  

−  
n + r

2

  .         (3.8)

Clearly, LCPL (θ1 )  suffers from the same drawback as LPL (θ1 )  in this case as 

│θ1│→   ∞  .
Remark 4. Another adjustment of the profile likelihood is proposed in McCullagh 

and Tibshirani (1990) based on the idea of unbiased estimating functions. Suppose 

θ  is the parameter of interest and ψ  is the nuisance parameter. Denote the score 

function derived from the profile log-likelihood by U (θ ) =
∂
∂θ

log  LPL (θ1 )  where 

LPL(θ1 ) = L(θ, ψ̂ (θ ))  , ψ̂ (θ )  being the MLE of ψ  for fixed θ  . A property of the 

regular maximum likelihood score function is that it has zero mean, and its 

variance is the negative of the expected derivative matrix, expectation being 

computed at the true parameter value. McCullagh and Tibshirani (1990) propose 

adjusting U (θ )  so that these properties hold when expectations and derivatives 

are computed at (θ, ψ̂ (θ ))  rather than at the true parameter point.
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To this end, let Ũ (θ ) = [V (θ ) − m (θ )]w (θ )  , where m (θ )  and w (θ )  are so 

chosen that E
θ,ψ̂ (θ)

Ũ(θ) = 0  and Vθ, ψ̂ (θ )
(Ũ (θ )) =− E

θ, ψ̂ (θ )
[
∂
∂θ

Ũ (θ )]  . this leads 

to the solutions 

         

m(θ ) = E
θ,ψ̂ (θ )

  U(θ )

w (θ ) = [−E
θ,ψ̂ (θ )

∂2

∂θ2
log  LPL(θ ) +

∂
∂θ

m(θ )]   /   V
θ, ψ̂

[U(θ )]
           (3.9)

Then the adjusted profile log-likelihood is given by

          LAPL(θ )  =   exp    
θ

Ũ (t )dt    .                                 (3.10)

In the present example with θ = θ1  and ψ = (θ2, ..., θr  , θr+ 1 ) , it follows after some 

simplifications that

U(θ1 ) =
∂  log   LPL(θ1 )

∂θ1
=−

n
2

2 ( 2̂θ1 − 1̂ )[ 2̂ (c12θ1 + c22 ) + 1̂ (c11θ1 + c12 )]

[SSE + |C|2 ( 2̂θ1 − 1̂ )
2/Q(θ1 )]Q(θ1 )

 .  

(3.11)

Next observing that V








1̂

2̂

= σ2 c11 c12

c12 c22

− 1

=
σ2

|C|
c22 − c12

− c12 c11
 , it follow 

that

 

Cov [ 2̂θ1− 1   ̂,   2̂ (c12θ1 + c22) + 1̂(c11θ1 + c12)]

       =
σ2

|C| [θ1(c12θ1 + c22)c11− (c11θ1 + c12)c22− θ1(c11θ1 + c12)c12− (c12θ1 + c22)c12 ] = 0

  (3.12)

This proves the independence of 2̂θ1 − 1̂  and 2̂ (c12θ1 + c22 ) + 1̂ (c11θ1 + c12 )  . 

Also, since 2̂θ1 − 1̂  is N








0,
σ2

|C| Q(θ1 ) , it follows that 

E    2̂θ1 − 1̂

SSE+ |C|2 ( 2̂θ1 − 1̂ )
2/Q(θ1 )

    =     0 . 
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Hence, from (3.11) and (3.12),  m(θ1 ) = E [U (θ1 )] = 0  . Also, it can be shown 

after much algebra that w(θ1 ) = k + O(n− 1 ), where k (> 0 )  is some positive 

constant not depending on θ1. Thus, Ũ(θ1 ) = k − 1U(θ1 ) + O(n− 1 ). This shows 

that log  LAPL = k − 1   log  LPL(θ1 ) + O(n− 1 )  proving thereby that LAPL (θ1 )  suffers 

from the same drawback as LPL(θ1 )  when │θ1│→   ∞  .  However, such an 
integrated likelihood cannot be identified with any proper posterior of θ1  since 

−∞
∞

LI (θ1 )dθ1 =+∞.

4. Concluding Remark

In many important problems of statistical inference (e.g. the Neyman-Scott 

problem), the deficiency of the profile likelihood has been modified by various 

adjustments. We consider such as the conditional profile likelihood and the 

adjusted profile likelihood in Section 3. However, as we saw in Section 3, such 

likelihoods remain bounded away from zero at the end points of the parameter 

space, and accordingly, any likelihood-based interval for the ratio of means could 

potentially become the entire real line. Earlier, this problem has been noticed in 

the Liseo (1993) and Yin and Ghosh (2000) for the special Fieller-Creasy problem. 

Interestingly, we find here that an integrated likelihood derived under the 

algorithm of Berger, Liseo and Wolpert (1996) avoids this drawback. 

To find the integrated likelihood approach proposed in Berger, Liseo and Wolpert 

(1999), we begin with the likelihood

   L(θ1, 2, ..., r  ,σ )   ∝  σ− n  exp [−
1

2σ2
SSE + c11 ( 2θ1 − 1̂ )

2

+ 2c12 ( 2θ1 − 1̂ )( 2 − 2̂ ) + c22 ( 2− 2̂ )
2 + u TA 3u  ]  .

The corresponding Fisher information matrix is given by

I(θ1, 2, ..., r  ,σ ) =
1

σ2

c11
  2
2 2 (c11 + c12 ) 0 

T 0

2 (c11 + c12 ) Q(θ1 ) 0 T 0
0 0 A 3 0

0 0 0 T 2n

   .

Following Berger, Liseo and Wolpert (1999), we begin with the development of 
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conditional reference integrated likelihood. To this end, first we start with the 

reference priors π* ( 2, ..., r,   σ|θ1 )∝σ− rQ 1/2 (θ1 )  based on the positive square 

root of the determinant of the appropriate submatrix of the Fisher information 

matrix. Next, taking the sequence of compact intervals 

[− i, i ] [− i, i ] [− i, i ] [i − 1, i ],  i = 1, 2, 3, ...  for ( 2, ..., r   ,   σ ) , following 

Berger, Liseo and Wolpert (1999)

k − 1
i (θ1 ) =

i− 1

i

− i

i

− i

i

σ− rQ 1/2 (θ1 )d 2d 3...d rdσ   ∝   Q 1/2 (θ1 )   .

Thus, lim
i→∞

ki (θ1 )/ki (θ10 )∝Q − 1/2 (θ1 )  where θ10  is a fixed value of θ1  . Now from 

Berger, Liseo and Wolpert (1999), the conditional reference prior is given by

πR( 2, ..., r,   σ|θ1 )   ∝   σ− rQ 1/2 (θ1 )Q
− 1/2 (θ1 )   =  σ− r    .

The corresponding integrated likelihood after some simplification is then

LI (θ1 )   ∝   
0

∞
−∞
∞

−∞
∞

πR( 2, ..., r   ,σ|θ1 )  d 2 d 3...d r  dσ

  ∝   Q − 1/2 (θ1 )[SSE + |C|2 ( 2̂θ1 − 1̂ )
2/Q(θ1 )]

− n/  2

which multiplies the profile likelihood by the factor Q − 1/ 2 (θ1 ) . The advantage of 

the integrated likelihood over the profile likelihood is that it tends to 0  as 

│θ1│→   ∞   due to the multiplying factor Q − 1/  2 (θ1 ) . 

5. Appendix

Proof of Theorem 1

Let I(θ ) = J   I( , σ )  J T. Then
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(J  I)11  = 
θ2

θ 2
 r + 1

[s11 θ1h (θ1 ) + h (θ1 ) + s12h (θ1 ) − Σ
j = 3

r

s1j  g j (θ1 )]

(J  I)12  = 
θ2

θ 2
 r + 1

[s12 θ1h (θ1 ) + h (θ1 ) + s22h (θ1 ) − Σ
j = 3

r

s2j  g j (θ1 )]

(J  I)1i  = 
θ2

θ 2
 r + 1

[s1i θ1h (θ1 ) + h (θ1 ) + s2ih (θ1 ) − Σ
j = 3

r

si1j  g j (θ1 )]  ,    i = 3, ..., r

(J  I)1,r + 1  = 0                      .

  

Hence, if

g 3 (θ1 )

g r(θ1 )
        =   

s33 s3r

s3r srr

− 1

  
s13 s23

s1r s2r

  
θ1h (θ1 ) + h (θ1 )

h (θ1 )
   ,

then one has (J  I)1i = 0 , i = 3, ..., r  . So pick

g3 (θ1 )

gr (θ1 )
     =   

s33 s3r

s3r srr

− 1

  
s13 s23

s1r s2r

  
θ1h (θ1 )
h (θ1 )

=   
a31 a32

ar1 ar2

    
θ1h (θ1 )
h (θ1 )

=   h (θ1 )  
a31θ1 + a32

              
ar1θ1 + ar2

                            .

Now, since I(θ ) = J   I( ,σ )  J  T , one has

(I(θ ))1i   = ( ) J  I  1i    =     0   ,   i = 3, .., r, r + 1  .

 

Similarly, 

(I(θ ))2i   = ( ) J  I  2i    =     0   ,   i = 3, .., r, r + 1  .

Note that
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(I(θ ))12 = (J  I  J   T)12

=
θ2h (θ1 )

θ2
r + 1

[s11θ1 θ1h (θ1 ) + h (θ1 ) + 2s12θ1h (θ1 ) − θ1Σ
j = 3

r

s1j  g  j (θ1 )

   + s12h (θ1 ) + s22h (θ1 ) − Σ
j = 3

r

s2j  g  j (θ1 )]

        

=
θ2h (θ1 )

θ2
r + 1

[s11θ1 θ1h (θ1 ) + h (θ1 ) + 2s12θ1h (θ1 )

− θ1Σ
j = 3

r

s1j aj1 [θ1h (θ1 ) + h (θ1 )] + aj2h (θ1 )

+ s12h (θ1 )s22h (θ1 ) − Σ
j = 3

r

s2j aj1 [θ1h (θ1 ) + h (θ1 )] + aj2h (θ1 ) ]             .

We need I 12 = 0  to satisfy the condition of orthogonality. Thus, we require

     

0 = h (θ1 )[θ2
1 (s11 − Σ

j = 3

r

s1j a j 1 ) + θ1 (2s12 − Σ
j = 3

r

s1ja j2 − Σ
j = 3

r

s2j a j1 )

+ s22 − Σ
j = 3

r

s2ja j 2 ] + h (θ1 )[θ1 (s11 − Σ
j = 3

r

s1j a j1 ) + s12 − Σ
j = 3

r

s2j a j1 ]      .

 .

Also Σ
j = 3

r

s1ja j 2 = Σ
j = 3

r

s2j a j 1  , since

Σ
j = 3

r

s1jaj2   = (s13   s1r)  
s33 s3r

s3r srr

− 1

  
s23

s2r

Σ
j = 3

r

s2jaj1   = (s23   s2r)  
s33 s3r

s3r srr

− 1

  
s13

s1r

            .

 

Hence, one needs to find h (θ1 )  from

0 = h (θ1 )[θ2
1 (s11 − Σ

j = 3

r

s1j a j1 ) + 2θ1 (s12 − Σ
j = 3

r

s1j a j2 ) + s22 − Σ
j = 3

r

s2ja j2 ]

+ h (θ1 )[θ1 (s11 − Σ
j = 3

r

s1j a j1 ) + s12 − Σ
j = 3

r

s1ja j2 ]      .

Thus,
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h (θ1 )

h (θ1 )
=−

θ1 (s11 − Σ
j = 3

r

s1j  a j1 ) + s12 − Σ
j = 3

r

s1j a j2

θ2
1 (s11 − Σ

j = 3

r

s1j a j1 ) + 2θ1 (s12 − Σ
j = 3

r

s1j a j2 ) + s22 − Σ
j = 3

r

s2j a j2

or equivalently

log    h (θ1 ) =−
1
2

θ2
1 (s11 − Σ

j = 3

r

s1j a j1 ) + 2θ1 (s12 − Σ
j = 3

r

s1j a j2 ) + s22 − Σ
j = 3

r

s2j a j2   .

This leads to

h (θ1 ) = θ2
1 (s11 − Σ

j = 3

r

s1j a j1 ) + 2θ1 (s12 − Σ
j = 3

r

s1j a j2 ) + s22 − Σ
j = 3

r

s2j a j2

−
1
2

= [c11θ
2
1 + 2c12θ1s12 + c22 ]

− 1/  2       .
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