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Abstract

The subject of assessing whether a data set is from a specific 
distribution has received a good deal of attention. This topic is critically 
important for uniform distributions. Several parametric tests are compared. 
These tests also can be used in testing randomness of a sample. 

Anderson-Darling A2  statistic is found to be most powerful.
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1. INTRODUCTION

The subject of assessing whether a data set is from a specific distribution has 

received a good deal of attention. This topic is critically important for uniform 

distributions and is different from usual tests for randomness. There are different 

parametric and nonparametric tests for randomness. A nonparametric textbook 

such as Daniel(1990) and Gibbons and Chakraborti(2003) would provide extensive 

references. Marsaglia(2003) and L'Ecuyer and Hellekalek(1998), and the references 

therein provide a group of tests meant for testing goodness of different random 

number generators. Here we compare eight different commonly used parametric 

goodness of fit tests for uniformity through simulation. Let us consider that 

X1,  X2,,   ,  Xn  be a random sample taken from a Uniform(0,1) distribution. We 

will first explain all the eight tests. In Section 2 we will provide the simulation 

results. In Section 3 we will give a brief conclusion based on the simulation 

results.
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1.1. APPROXIMATE χ
2
U  GOODNESS OF FIT

By grouping the data into g  equal groups such that each group has expected 

frequency of at least five and the number of groups is not too large, we can 

calculate χ
2
U  goodness of fit statistic as

χ2
U  =  Σ

i = 1

g (OUi − EUi )
2

EUi
,                          (1)

where OUi  is the observed number of values in the i
th  group and EUi =  n/g  is 

the expected frequency in the i th  group assuming that the sample is from the 

Uniform(0,1) distribution. The  χ
2
U  statistic will follow approximate Chi-square 

distribution with g − 1  degrees of freedom.

1.2. APPROXIMATE χ
2
U  GOODNESS OF FIT VIA NORMAL

Box and Muller (1958) showed that if X1  and X2  are two independent uniform 

random variables on (0,1), then Z1 =  
√

− 2 ln (X1 )sin (2πX2 )  and 

Z2 =  
√

− 2 ln (X1 )cos (2πX2 )  are independent standard normal variates. After 

using the Box-Muller transformation, we can compute χ
2
N  statistic as in equation 

(1). The expected frequencies are computed after computing the cell probabilities 

using the standard normal table (here we used MATLAB mathematical 

computational software) and then multiplied by n. It is to be noted that in 

simulation we have used two independent random samples of size n  from Uniform 

(0,1) distribution to transform to the standard normal but in practice the sample 

should be divided into two equal groups before applying the Box-Muller 

transformation. The groups are determined such that the expected frequencies are 

more than five and are equal.

1.3. EXACT χ2
Z  GOODNESS OF FIT VIA NORMAL

As we know that the sum of squared standard normal variates follow the

Chi-square distribution with n  degrees of freedom. So, the test statistic is



Tests for Uniformity : A Comparative Study 213

χ2
Z =  Σ

i = 1

n

Z 2
i  ,

where Zi's are the standard normal variate after the Box-Muller transformation as 

in Section 1.2.

1.4. THE CRAMER-VON MISES W 2  TEST

A distribution function test suggested by van Soest (1969), is known as the 

Cramer-von Mises W 2  test. The Cramer-von Mises statistic is computed as 

W 2 =  






W *2 −
4

10n
+

6

10n 2






1 +
1
n

   ,

where

W *2 =








Σ
i = 1

n






Zi −
2i − 1

2n

2

 +  
1

12n

and Zi = Xi : n , the ordered data from the smallest to the largest. The test was 

modified so that the percentiles are independent of n. In Table 1, the percentiles 

are displayed. In Table 1, the first line indicates the upper tail probabilities and 

the second line represents the corresponding quantiles. These are recently 

recomputed and displayed by D'Agastino and Stephens (1986, p.105).

Table 1 : Upper tail percentiles for cramer-von Mises W 2  test

0.250   0.150   0.100   0.050   0.025   0.010   0.005   0.001

0.209   0.284   0.347   0.461   0.581   0.743   0.869   1.167

1.5. THE WATSON U 2  TEST

A distribution function test is suggested by Watson (1961). The Watson U 2  

statistic is computed as

U 2 =  






U *2 −  
1

10n
+

1

10n 2






1 +
8

10n
  ,

where

U *2 =








W *2 − n 





Z−
1
2

2

 ,
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W *2  and Zi's are defined above and Z = Σ
i = 1

n

Zi/n. The percentiles are displayed 

in Table 2. In Table 2, the first line indicates the upper tail probabilities and the 

second line represents the corresponding quantiles. The test was modified so that 

the percentiles are independent of n  and are given in D'Agastino and Stephens 

(1986, p.105).

Table 2: Upper tail percentiles for Cramer-von Mises U2 test

0.250   0.150   0.100   0.050   0.025   0.010   0.005   0.001

0.105   0.131   0.152   0.187   0.222   0.268   0.304   0.385

1.6. THE ANDERSON-DARLING A2 TEST

A distribution function test is suggested by Anderson and Darling (1952). The 

Anderson-Darling A2  statistic is computed as

A2 =− n−
1
nΣi = 1

n

( )2i − 1  ln Zi + ( )2n+ 1 − 2i  ln ( )1 − Zi  ,

where Zi's are as above. The percentiles are given in Table 3. In Table 3, the 

first line indicates the upper tail probabilities and the second line represents the 

corresponding quantiles. The percentiles are independent of n  and are from 

D'Agastino and Stephens (1986, p.105).

Table 3: Upper tail percentiles for Anderson-Darling A2 test

0.250   0.150   0.100   0.050   0.025   0.010   0.005   0.001

1.248   1.610   1.933   2.492   3.070   3.880   4.500   6.000

1.7. APPROXIMATE χ
2
E  GOODNESS OF FIT VIA EXPONENTIAL

We can easily convert a uniform (0,1) random variate X  to a standard 

exponential variate Y  using the transformation Y =−  ln (1 − X ) . Then we can 

compute the Chi-square statistic as in Section 1.1. Here the expected frequencies 

are computed by multiplying the group probabilities using the standard exponential 

CDF(cumulative distribution function). The groups are determined such that the 

expected frequencies are more than five and are equal.
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1.8. EXACT χ
2
G  GOODNESS OF FIT VIA EXPONENTIAL

We know that 2Σ
i = 1

n

Yi  has a Chi-square distribution with 2n  degrees of freedom 

and can be used as a test statistic. Where Yi's are defined as in Section 1.7.

2. Simulation Results

One hundred thousand samples are taken for each of 10, 20, 30, 40, 50, and 100 

sample sizes. Then the proportions of rejections are computed for 1% and 5% 

levels of significances. Samples are taken from Uniform (0,1) (U(0,1)) to compute 

the empirical levels of significances to compare with the true levels of 

significances. Then samples are also taken from standard normal (N(0,1)) 

distribution as a representative from a symmetric class of distributions and 

standard exponential (Exp(1)) distribution as a representative from an asymmetric 

class of distributions to assess the powers of the tests. In the power 

computations, the samples are transformed such that the range of the data is 

between 0 and 1 to compute all the statistics mentioned above. The simulation 

results are given in Table 4.

3. Conclusion

All eight tests are consistently estimating the levels of significances, showing 

that the distributions under the assumption of uniformity are pretty accurate. In 

comparison for powers, A2  statistic outperform all the tests regardless of the 

distribution normal or exponential from which samples are taken. χ
2
Z  test has 

higher power compared to χ
2
G  test when the samples are from N(0,1) and the role 

is reversed when the samples are from Exp(1). χ2
U ,  χ

2
N ,  χ

2
E ,  W

2, and U 2  tests 

have higher powers when the samples are from Exp(1) compared to the samples 

from N(0,1).

The findings here are consistent with Marsaglia and Zaman (1993) regarding 

inferiority of Pearsons Chi-square tests and consistent with L'Ecuyer and 

Hellekalek (1998) regarding superiority of the A2  statistic. Note that L'Ecuyer and 

Hellekalek (1998) did not present any comparative study with Pearson Chi-square 

tests and with U 2  and W 2  tests. Here we also compared between different exact 

and approximate Pearson Chi-square statistics.
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Table 4: Rejection Proportions

n g Test U(0,1) Samples Exp(1) Samples N(0,1) Samples

α =  0.01 α = 0.05 α =  0.01 α = 0.05 α =  0.01 α = 0.05

10 2 χ2
U

χ2
N

χ2
Z

W 2

U 2

A2

χ2
E

χ2
G

0.0017

0.0019

0.0095

0.0100

0.0092

0.0102

0.0017

0.0097

0.0208

0.0217

0.0490

0.0491

0.0493

0.0494

0.0208

0.0496

0.0000

0.0000

0.0417

0.2069

0.2032

0.2370

0.0000

0.0002

0.1837

0.1847

0.1305

0.3996

0.3937

0.4342

0.1837

0.0031

0.0000

0.0013

0.8991

0.0113

0.0113

0.9990

0.0000

0.0121

0.0294

0.0413

0.8992

0.0552

0.0585

0.9991

0.0294

0.0689

20 3 χ2
U

χ2
N

χ2
Z

W 2

U 2

A2

χ2
E

χ2
G

0.0076

0.0072

0.0097

0.0105

0.0099

0.0105

0.0076

0.0102

0.0556

0.0552

0.0497

0.0503

0.0497

0.0516

0.0556

0.0501

0.5840

0.4069

0.1817

0.7429

0.6157

0.7445

0.5839

0.1507

0.8011

0.7018

0.3616

0.8712

0.7851

0.8720

0.8011

0.4257

0.0470

0.0273

0.9503

0.0416

0.0801

1.0000

0.0470

0.0090

0.2127

0.1285

0.9502

0.1353

0.2186

1.0000

0.2127

0.0445

30 5 χ2
U

χ2
N

χ2
Z

W 2

U 2

A2

χ2
E

χ2
G

0.0099

0.0095

0.0102

0.0102

0.0099

0.0101

0.0099

0.0100

0.0455

0.0460

0.0507

0.0503

0.0504

0.0503

0.0455

0.0497

0.8590

0.8324

0.3671

0.9455

0.8635

0.9442

0.8590

0.7145

0.9349

0.9325

0.5749

0.9808

0.9427

0.9799

0.9349

0.8702

0.1708

0.0631

0.9661

0.0956

0.2887

1.0000

0.1708

0.0141

0.3565

0.1623

0.9661

0.2627

0.5041

1.0000

0.3565

0.0665

40 6 χ2
U

χ2
N

χ2
Z

W 2

U 2

A2

χ2
E

χ2
G

0.0092

0.0094

0.0101

0.0102

0.0099

0.0102

0.0092

0.0096

0.0464

0.0469

0.0498

0.0496

0.0495

0.0493

0.0464

0.0492

0.9589

0.9695

0.5382

0.9910

0.9906

0.9908

0.9589

0.9318

0.9844

0.9905

0.7256

0.9976

0.9873

0.9976

0.9844

0.9775

0.3517

0.0950

0.9750

0.1790

0.5498

1.0000

0.3519

0.0356

0.5693

0.2024

0.9750

0.4330

0.7454

1.0000

0.5693

0.1163
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Table 4 (Continued): Rejection Proportions

n g Test U(0,1) Samples Exp(1) Samples N(0,1) Samples

α =  0.01 α = 0.05 α =  0.01 α = 0.05 α =  0.01 α = 0.05

30 5 χ2
U

χ2
N

χ2
Z

W 2

U 2

A2

χ2
E

χ2
G

0.0110

0.0097

0.0105

0.0101

0.0097

0.0108

0.0110

0.0101

0.0462

0.0457

0.0510

0.0495

0.0484

0.0506

0.0462

0.0504

0.9872

0.9943

0.6704

0.9985

0.9901

0.9985

0.9872

0.9865

0.9958

0.9986

0.8212

0.9998

0.9974

0.9998

0.9958

0.9965

0.5145

0.1446

0.9803

0.2962

0.7522

1.0000

0.5145

0.0696

0.7105

0.2790

0.9803

0.6051

0.8842

1.0000

0.7105

0.1751

40 6 χ2
U

χ2
N

χ2
Z

W 2

U 2

A2

χ2
E

χ2
G

0.0103

0.0106

0.0101

0.0102

0.0100

0.0105

0.0103

0.0104

0.0503

0.0494

0.0500

0.0507

0.0498

0.0510

0.0503

0.0508

1.0000

1.0000

0.9370

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

1.0000

0.9727

1.0000

1.0000

1.0000

1.0000

1.0000

0.9629

0.4273

0.9897

0.8930

0.9967

1.0000

0.9629

0.2862

0.9890

0.6212

0.9897

0.9834

0.9992

1.0000

0.9890

0.4365
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