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Jackknife Estimation in an  Exponential Model1)

Jungsoo Woo2)  

Abstract

Parametric estimation of truncated point in a truncated exponential 
distribution will be considered. The MLE, bias reducing estimator and the 
ordinary jackknife estimator of the truncated parameter will be compared 
by mean square errors. And the MME and MLE of mean parameter and 
estimations of the right tail probability in the distribution will be 
compared by their MSE's.
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1. Introduction

Here we shall consider a right truncated exponential distribution with the 

following pdf:

            f(x ;η)=
e- x

1-e- η
,        0 < x < η ,  where η>0.            (1.1)

The truncated exponential distribution has an increasing failure rate, ideally 

suited for use as a survival distribution for biological and industrial data.

For values of η  that are corresponding to small amounts of truncation, the 

hazard rate function increases very slowly up to a certain time and then 

asymptotically climbs to infinity at η .

The general right truncated exponential pdf of X, f(x ; θ,T)=
θe -θ x

1-e
-θT

, 

0<x<T (1.2)(see Hannon & Dahiya(1999)) comes the pdf (1.1) when Y= θX  if the 

parameter θ  is known.
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Hannon & Dahiya(1999) examined the general and asymptotic properties of all 

estimators in a right truncated exponential distribution with the pdf (1.2).

Here the MLE, a bias reducing estimator and the ordinary jackknife estimator of 

η  will be considered, and we shall compare each other in a sense of MSE. And 

the MLE and MME of mean parameter and estimations of the right tail probability 

in the right truncated exponential distribution will be compared each other in a 

sense of MSE 

2. Parametric estimations

From the pdf (1.1) of the right truncated exponential distribution, its mgf can be 

obtained:

MX(t)=
τ
-1
(η )

t-1
⋅(e η( t-1)-1), if t≠1,   where τ(η)=1-e

-η.

Existence of the mgf guarantees all orders of moment in the right truncated 

distribution, especially the expectation and variance of the distribution

μ=E(X)=η+(1-η⋅τ-1(η) )
and

σ 2=Var(X)= 1-η2⋅e- η/τ 2(η ) .

Let X 1,X 2,...,Xn
 be a simple random sample from the right truncated 

exponential distribution with the pdf (1.1). Then from the factorization Theorem in 

Rohatgi(1976), the largest order statistics X ( n )
  is sufficient statistic of η and 

its pdf is:

           fX ( n )
(x)= n⋅τ- n(η )⋅e- x⋅(1- e- x ) n-1,   0<x< η .          (2.2)

From the formulas 3.381(1) & 8.352(1) in Gradsheyn & Ryzhik(1965), we can 

show the following indefinite integral by finite sums.

Fact 1. Let I(p,q,r ; η)≡⌠⌡

η

0
x p(1-e- x ) qe - r xdx , where p and q are non- 

negative integers. Then

I(p,q,r ; η)= p!⋅∑
q

i=0
(-1) i

q
i( ) ( i+ r)

- p- 1 (1- e - ( i+ r )η ⋅ ∑
p

m=0

(i+r)m

m!
ηm ).

2-1. Estimation of a truncated parameter
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The following estimators of η  are given as the followings:

η̂=X ( n )
, the MLE of η ,

η̃= 2X ( n )-X ( n-1)
, a bias reducing estimator of η(Hannon & Dahiya (1999)), 

and  J( η̂)=
2n-1
n

X ( n )-
n-1
n

X ( n-1)
, the ordinary jackknife estimator of η

(Gray & Schucany(1972)).

From the pdf (2.2) and Fact 1, we can represent the expectation and variance of 

MLE by the integral forms in Fact 1.

     E( η̂)= n⋅τ- n(η)⋅I(1 , n-1, 1 ; η)  ,

Var( η̂)= n⋅τ- n(η)⋅I(2,n-1,1 ; η)-n 2⋅τ- 2n(η )⋅I 2(1, n-1,1 ;η).  (2.3)

Since the pdf of (n-1)-th order statistic X ( n- 1)
 is

fX ( n- 1)
(x)=n(n-1)⋅τ- n(η)⋅(1- e- x ) n-2⋅(e- x-e-η)⋅e- x, 0<x< η , (2.4) 

from Fact 1, the pdfs (2.2) and (2.4), we can represent the expectations of the 

bias reducing estimator η̃  and the ordinary jackknife estimator J(η)̂  by the 

integral forms.

   E( η̃) = n(n+1)⋅τ- n(η)⋅I(1,n-1,1 ;η)-                                

             n(n-1)⋅τ1- n(η)⋅I( 1,n-2,1 ;η)

 E( J( η̂)) = n2⋅τ- n⋅I(1,n-1,1 ;η)- (n-1)2⋅τ1- n(η)⋅I(1,n-2,1 ;η).(2.5)

 

Since the joint pdf of (n-1)-th and n-th order statistics is

f X ( n- 1),X ( n )
(x,y)= n(n-1)⋅τ- n(η)⋅(1- e- x ) n- 2e- xe- y  , 0<x<y< η ,  (2.6) 

from Fact 1, the pdfs (2.2), (2.4) and (2.6), the second moments of η̃  and J( η̂)  

can be represented  by the inyegral forms to evaluate their variances.

         

  E( η 2̃)= 4n⋅τ- n⋅I( 2,n-1,1 ; η)                                            

              -n(n-1)τ- n(η) [ I( 2,n-1,1 ; η)-τ(η)⋅I( 2,n-2,1 ; η)]

           - 4n(n-1)⋅τ
- n
(η )[ I( 2,n-2,2 ; η)+ I(1,n-2,2 ; η)

           -(η+1)e- η⋅I( 1,n-2,1 ; η)] ,
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E( J
2
( η̂) ) =

(2n-1)2

n
τ
- n
(η )⋅I(2,n-1,1 ; η)

          -
(n-1) 3

n
τ- n(η )[ I(2,n-1,1 ; η)-τ(η)⋅I( 2,n-2,1 ; η)]

          -
2(n-1)

2
(2n-1)
n

τ- n(η )[ I( 2,n-2,2 ; η)+I(1,n-2,2 ; η)

          -(1+η)e-η⋅I( 1,n-2,1 ; η)] .                               (2.7) 

Table 1 shows numerical values of MSE of the MLE, the bias reducing 

estimator and the ordinary jackknife estimator of the truncated parameter in the 

right truncated exponential distribution by using the results (2.3), (2.5) and (2.7) 

when η=1 and n=10(10)50.

Through Table 1, the ordinary jackknife estimator of η  is more efficient than 

other estimators in a sense of MSE when η=1.

Table 1. MSE of the MLE, a bias reducing estimator and the ordinary jackknife 

estimator of η  when η=1(units are 10
- 4).

         sample size           η̂                η̃              J(η)̂
            10              31.7587           30.7676        28.3443

            20              11.7595           10.6787        10.3189

            30              5.9845             5.5160         5.3160

            40              3.0159             3.0101         2.9375

            50              2.0306             1.9135         1.8776 

To find an asymptotic confidence interval of η , we need the following 

asymptotic properties:

By corollary 2 of  Hannon & Dahiya(1999), asymptotic Theorems in 

Rohatgi(1976) and the continuity of F(x), we can obtain the following:

Fact 2. (a) The MLE X ( n )
 converges to η  in probability.

(b) F(x ; η̂)  converges to F(x ; η)   in probability at every continuous point x of

   F(x ; η)=
1-e

- x

1-e- η
, 0<x< η .

By Theorem 1 of  Hannon & Dahiya(1999) and Fact 2, we can obtain the 

following an asymptotic property to obtain an asymptotic confidence interval of η .

Fact 3. 
η-X ( n )

η̂-F- 1(1-
1
n
; η̂ )

 converges to a random variable X in distribution,
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where X follows an exponential distribution with mean 1,  and   

F(x ; η)=
1-e

- x

1-e- η
, 0<x< η .

2-2. Estimation of mean paramemter

From (2.1), the MLE μ̂  and the MME μ̃  of μ  are

                μ̂= 1-X ( n )⋅e
-X ( n )

/ ( 1- e
-X ( n )

) ,  and

                μ̃=
1
n ∑

n

i=1
Xi  , respectively.                              (2.8)

From Fact 1 and the pdf (2.2) of X ( n )
, the expectation and variance of μ̂  can 

be represented by the integral forms in Fact 1.

               

               E( μ̂)= 1-n⋅τ- n(η )⋅I(1,n-2,2 ; η)  and

             

Var( μ̂)= n⋅τ
- n
(η )⋅I(2,n-3,3 ;η)-n

2
τ
- 2n
(η )⋅I

2
( 1,n-2,2 ; η) .    (2.9)

From the result (2.1), the MME μ̃  is an unbiased estimator of μ  and 

                      Var( μ̃) =
1
n
[ 1-η

2
e
- η
/τ
2
(η) ] .                   (2.10)

Table 2 shows numerical values of MSE of the MLE and MME of mean 

parameter in the right truncated exponential distribution by using the results (2.9) 

and (2.10) when η=1 and n=10(10)50.

Through Table 2, the MLE is more efficient than the MME of mean parameter 

in the right truncated exponential distribution when η=1.

Table 2. MSE of the MLE and MME of mean parameter in the right truncated 

exponential distribution(units are 10- 4).

            Sample size             MLE             MME

               10                   4.213             7.814

               20                   1.507             4.127

               30                   0.626             2.611

               40                   0.402             1.915

               50                   0.222             1.603

 

While, since the mean parameter μ= μ(η)=2-
η

1- e-η
, η > 0 , lim

η→0
μ(η)= 1  
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and d
dη
μ(η)=

e-η(1+η)-1

(1- e-η ) 2
 is negative, and hence μ(η)  is a monotone 

decreasing function of η .

Therefore, inference on η  is equivalence to inference on μ(η)(see McCool(1991)), 

and so it's sufficient for us to estimate η  instead of estimating μ(η)(see section 

2-1). Here we could recommend the ordinary jackknife estimator of η  to estimate 

μ(η)  by the result in Section 2-1.

2-3. Estimation of right tail probability

Based on the pdf (1.1) of the right truncated exponential distribution, the right 

tail probability is

R( t)=P(X > t)=1-τ( t)⋅τ-1(η).

Since d
dη
R( t ; η)=τ( t)⋅e

-η
⋅τ

-2
(η)  is positive , R( t ; η)  is a monotone 

increas- ing function of η .  

Therefore, inference on η  is equivalence to inference on R( t ; η)(see 

McCool(1991)), and so it's sufficient for us to estimate η  instead of estimating

R( t ; η)(see section 2-1).

Here we could recommend the ordinary jackknife estimator of η  to estimate 

R( t ; η)  by the result in Section 2-1.

Next we shall consider estimation of F(t ; η)=
1-e

- t

1-e-η
 instead of estimating 

R( t ; η)=1- F( t ; η).  From the MLE of η , the MLE F̂ ( t ) of F(t) is given by:

F̂ ( t )= τ( t)⋅(1-e
-X ( n) )- 1, 0<t< η .

To evaluate the expectation and variance of F̂ ( t ), from the integral of Fact 1 

we need the following result.

Fact 4. I(0,n-k,1 ; η)=
1

n- k+1
(1- e

- η
)
n- k+ 1, k=1,2,....,n.

Proof. By transformation of variable in the definition of I(0,n-k,1 ; η), we can 

obtain

I( 0,n- k,1 ; η)=B( 1,n- k+1)-B e- η ( 1, n- k+1) ,

where B(a,b) and B x(a,b) are beta and incomplete beta functions, respectively.

By the formulas (6.62) and (6.6.4) in Abramowitz & Stegun(1972), we can obtain

B e
- η(1,n- k+1)=

1
n- k+1

(1-(1-(1- e- η) n- k+ 1 ) .
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Since B(a,b)= Γ(a)Γ(b)
Γ(a+b)

, we have done.

From Fact 4 and the pdf (2.2) of X ( n )
, we can obtain the expectation and 

variance of F̂ ( t ):

                    E( F̂ ( t ))=
n
n-1

F( t)   and

                  Var( F̂ ( t ))=
n

(n-1)2 (n-2)
F 2(t).                 (2.11)

From the expectation in the result (2.11), 

F̃ ( t )≡
n-1
n

τ( t)⋅(1-e
-X ( n) )- 1

is an unbiased estimator of F(t), and its variance is

                  Var( F̃ ( t ) ) =
1

n(n-2)
F
2
(t).                     (2.12)

From the results (2.11) and (2.12), MSE( F̃ ( t ))  is less than MSE( F̂ ( t )).

Fact 5. An unbiased estimator F̃ ( t ) is more efficient than the MLE F̂ ( t ) in a 

sense of MSE.

For nonparametric estimation F(t), we have well known the followings in 

Rohatgi(1976)

                    F ( t)=#{ Xi ;Xi≤t, for i=1,2,...,n } /n

                 E( F ( t) )=F( t)  and Var( F ( t) )=F(t)(1-F(t))/n.        (2.13)

From the results (2.12) and (2.13), we can obtain the following result.

Fact 6. An unbiased estimator F̃ ( t ) is more efficient than the nonparametric 

estimator F ( t)  in a sense of MSE for all t satisfying F(t)<
n-2
n-1

,  vice versa 

for else t.

2-4. An application(see David (1981, p.171)

To test Ho ;η 1= η 2  against a general alternative, assume two independent 

random variables X 1,X 2,...,Xm∼ f(x ; η 1)  and Y 1,Y 2,...,Yn∼ f(x ; η 1) , 

where f(x ; η)= τ
- 1
(η)⋅e

- x
,  0 < x < η , τ(η)=1-e

-η.

Let Z (m+ n )= max { X 1,...,Xm,Y 1,...,Yn  }. Then the test statistics
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Λ(Xi's,Yj's)=-2 log
τm(X (m) )⋅τ

n(Y (n) )

τ
m+ n
(Z (m+ n) )

 follows χ 2-distribution with df 

2.

where X (m )
 and Y ( n )

 are the largest order statistics of 

X 1,X 2,...,Xm∼ f(x ; η 1)  and Y 1,Y 2,...,Yn∼ f(x ; η 1) , respectively.
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