DOI QR코드

DOI QR Code

아세틸렌의 열 및 플라즈마 CVD법으로 제조한 탄소나노튜브의 물성과 구조적 특성

Physical Properties and Morphology of Carbon Nanotubes Prepared by Thermal and Plasma CVD of Acetylene

  • 김명찬 (명지대학교 공과대학 화학공학과) ;
  • 문승환 (명지대학교 공과대학 화학공학과) ;
  • 임재석 (명지대학교 공과대학 화학공학과) ;
  • 함현식 (명지대학교 공과대학 화학공학과) ;
  • 김명수 (명지대학교 공과대학 화학공학과)
  • Kim, Myung-Chan (Department of Chemical Engineering, Myongji University) ;
  • Moon, Seung-Hwan (Department of Chemical Engineering, Myongji University) ;
  • Lim, Jae-Seok (Department of Chemical Engineering, Myongji University) ;
  • Hahm, Hyun-Sik (Department of Chemical Engineering, Myongji University) ;
  • Kim, Myung-Soo (Department of Chemical Engineering, Myongji University)
  • 발행 : 2004.06.30

초록

Multi-walled carbon nanotubes (CNTs) were prepared by thermal chemical vapor deposition (CVD) and microwave plasma chemical vapor deposition (MPCVD) using various combination of binary catalysts with four transition metals such as Fe, Co, Cu, and Ni. In the preparation of CNTs from acetylene precursor by thermal CVD, the CNTs with very high yield of 43.6 % was produced over $Fe-Co/Al_2O_3$. The highest yield of CNTs was obtained with the catalyst reduced for 3 hr and the yield was decreased with increasing reduction time to 5 hr, due to the formation of $FeAl_2O_4$ metal-aluminate. On the other hand, the CNTs prepared by acethylene plasma CVD had more straight, smaller diameter, and larger aspect ratio(L/D) than those prepared by thermal CVD, although their yield had lower value of 27.7%. The degree of graphitization of CNTs measured by $I_d/I_g$ value and thermal degradation temperature were 1.04 and $602^{\circ}C$, respectively.

키워드

참고문헌

  1. Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow and S. Iijima, Mass Production of Single-wall Carbon Nanotubes by the Arc Plasma Jet Method, Chem. Phys. Lett., 323, 580 (2000) https://doi.org/10.1016/S0009-2614(00)00556-X
  2. I. Vesselenyi, K. Niesz, A. Siska, Z. Konya, K. Hernadi, J. B. Nagy, and Kiricsi, Production of Carbon Nanotubes on Different Metal Supported Catalysts, React. Kinet CataI. Lett., 74, 329 (2001) https://doi.org/10.1023/A:1017953514858
  3. A. K. M. Fazle Kibria, Y. H. Mo, K. S. Nahm, and M. J. Kim, Synthesis of Narrow Diameter Carbon Nanotubes from Acetylene Decomposition over an Iron-Nickel Catalyst Supported on Alumina, Carbon, 40, 1241 (2002) https://doi.org/10.1016/S0008-6223(01)00298-6
  4. A. Peigney, Ch. Laurent, O. Dumortier, and A. Rousset, Carbon Nanotubes-Fe- Alumina Nanocomposites, J. Euro. Cera. Soci., 18, 1995 (1998)
  5. Y. S. Lee, M. S. Kang, K. M. L, K. M. Lee, D. S. Kim, J. D. Ko, and C. K. Choi, Formation of the Diamond Thin Film by Microwave Plasma Chemical Vapor Deposidon Method, J. Basic Sci., 11, 15 (1998)
  6. Powder Diffraction File, 'Inorganic Phases I', JCPDS International Centre for Diffraction Data (1986)
  7. Powder Diffraction File, 'Inorganic Phases II', JCPDS International Centre for Diffraction Data (1986)
  8. Ch. Laurent, A. Rousset, M. R. Kannan, A. R. Raju, and C. N. R. Rao, Reduction Behaviour of $Fe^{3+}/Al_{2}O_{3}$ Obtained from the Mixed Oxalate Precursor and The Formation of The Fe/$Al_{2}O_{3}$ Metal-Ceramic Composites, J. Mater. Chem., 3, 513 (1993) https://doi.org/10.1039/jm9930300513
  9. M. Verest, K. R. Kannan, G. N. Subbanna, C. N. R. Rao, Ch. Laurent and A. Rousset, Investigations of The Reduction Behavior of Iron Impregnated Alumina Gels and The Formation of Fe/$Al_{2}O_{3}$ Metal-Ceramic Composites, J. Mater. Res., 7, 3072 (1992) https://doi.org/10.1557/JMR.1992.3072
  10. X. Devaux, Ch. Laurent, and A. Rousset, Chemical Synthesis of Metal Nanopaticles Dispersed in Alumina, Nanostruct Mater., 2, 339 (1993) https://doi.org/10.1016/0965-9773(93)90174-A
  11. X. Devaux, M. Brieu, and A. Rousset, Iron-Alumina Interface in Ceramic Matrix Nanocomposites, J. All. ComP., 188, 179 (1992) https://doi.org/10.1016/0925-8388(92)90670-5
  12. S. W. Jung, Preparation of Carbon Nanofiber Support and Catalytic Activity in CO Hydrogenation, M.S. Dissertation, Myongji Univ., Yongin, Korea (1998)
  13. O. A. Louchev, T. Laude, Y. Sato, and H. Kanda, Diffusion-controlled Kinetics of Carbon Nanotubes Forest Growth by Chemical Vapor Deposition, J. Chem. Phys., 118, 7622 (2003) https://doi.org/10.1063/1.1562195

피인용 문헌

  1. 메탄 플라즈마 CVD법으로 합성한 탄소나노튜브의 구조적 특성 vol.21, pp.4, 2004, https://doi.org/10.12925/jkocs.2004.21.4.4