Adsorption of p-Nitrophenol by Surface Modified Carbons from Aqueous Solution

  • Goyal, Meenakshi (Department of Chemical Engineering & Technology, Panjab University)
  • Received : 2004.02.05
  • Accepted : 2004.05.04
  • Published : 2004.06.30

Abstract

Adsorption isotherms of p-nitrophenol from its aqueous solutions on two samples of activated carbon fibres and two samples of granulated activated carbons have been determined in the concentration range 40~800 mg/L (ppm). The surface of these carbons was modified by oxidation with nitric acid and oxygen gas, and by degassing the carbon surface under vacuum at temperatures of $400^{\circ}C$, $650^{\circ}C$ and $950^{\circ}C$. The oxidation of carbon enhances the amount of carbon-oxygen surface groups, while degassing decreases the amount of these surface groups. The adsorption of p-nitrophenol does not depend upon the surface area alone but appears to be influenced by the presence of oxygen groups on the carbon surface. The adsorption decreases on oxidation while the degassing of the carbon surface enhances the adsorption. The decrease in adsorption depends upon the strength of the oxidative treatment being much larger in case of the oxidation with nitric acid, while the decrease in adsorption on degassing depends upon the temperature of degassing. The results show that while the presence of acidic surface groups which are evolved as $CO_2$ on degassing suppress the adsorption of p-nitrophenol, the presence of non acidic surface groups which are evolved as CO on degassing tend to enhance the adsorption. Suitable mechanisms compatible with the results have been presented.

Keywords