Modeling of Parallel Flow Type Condenser for Automotive Air Conditioning System

자동차 공조시스템용 평행류형 응축기의 모델링

  • 김일겸 (강남필터(주) 환경기술연구소) ;
  • 박우철 (삼척대학교 자동차공학과) ;
  • 이채문 (유한대학 기계과)
  • Published : 2004.03.31

Abstract

자동자 공조용 시스템에 사용되는 평행류형 응축기에 대하여 실제 운전조건에서 성능을 예측할 수 있는 모델링을 개발하였다. 모델링에 사용된 방법은 유효도-전달단위수법이고, 국소구간을 나누어 해석하는 국소구간법을 사용하였다. 모델링에 사용된 작동유체는 HFC134a이며, 응축기를 흐르면서 방생하는 냉매의 압력손실에 대한 물성변화를 포함시켜 보다 실제에 가깝게 해석하였다. 모델링에는 공기측과 냉매측의 열전달계수와 압력손실계수에 관한 상관식들을 포함하고 있다. 모델링의 결과는 실험값과 비교하여 비교적 잘 일치한다.

Keywords

References

  1. Taviss, D. P., Rohsenow, W. M., and Ba-ron, A. B., Forced Convection Condensation inside Tubes: A Heat Transfer Equation for Condenser Design, ASHRAE Trans., 1972, Vol. 79, pp.157-165
  2. Cavallini, A., and Zecchin, R., A Dimen-sionless Correlation for Heat Transfer in Forced Convection Condensation, Proc. 5th Int. Heat Transfer Conf., 1974, Vol. 79, pp. 309-31
  3. Shah, M. M., A General Correlation for Heat Transfer during Film Condensation inside Pipes, Int. J. Heat Mass Transfer, 1979, Vol. 22, pp. 547-556 https://doi.org/10.1016/0017-9310(79)90058-9
  4. Sato, Y. and Takahashi, T., An Expeh-mental Study of Condensation Heat Transfer of Refrigerant HCFC-22 in Aluminum Extruded Flat Tubes, JSME, 1994, No. 940-24
  5. Yang, C. Y., A Theoretical and Expehmental Study of Condensation in Flat Extruded Micro-fin Tubes, Ph. D. Thesis, Pennsylvania State Univ., 1994
  6. Lockhard, R. W., and Martinelli, R. C., Pro-posed Correlation of Data for Isothermal Two-Phase Two-Component Flow in Pipes, Chem. Eng. Prog, 1949. 45(1), pp. 39-48
  7. Chisholm, D., A Theoretical Basis for the Lockhart Martinelli Correlation for Two-Phase Flow. Int. J. Heat and Mass Trans., 1967, 10, 1767-1778 https://doi.org/10.1016/0017-9310(67)90047-6
  8. Friedel, L., Improved Fhction Pressure Drop Correlation for Horizontal and Vertical Two-Phase Pipe Flow, Eropian Two-Phase Flow Group Meeting, Isora, Italy, Paper E2, 1979
  9. Davenport, C. J., Correlations for Heat Tra-nsfer and Flow Friction Characteristics of Louvered Fin, Transactions of the ASME, 1983, pp.19-27
  10. Sahnoun. A. and Webb, R. L., Prediction of Heat Transfer and Friction for Louver Fin Geometry, Transaction of the AHME, 1992, Vol. 114, pp. 893-900 https://doi.org/10.1115/1.2911898
  11. Dillen, E. R., and Webb, R. L,, Rationally Based Heat Transfer and Fhction Correlations for the Louver Fin Geometry, Society of Automotive Engineers, Paper 940504, SAE International Congress. Detroit, MI, 1994, pp.1-8
  12. Webb, R. L., Chang, Y, J. and Wang, C. C., Heat Transfer and Friction Correlation's fort he Louver Fin Geometry, IMechE, 1995, Vol. C496/081, pp. 533-541
  13. Dittus, F. W., and Boelter, L. M .K., University of California Publications on Engineering, Berkely, 1930, Vol. 2, pp. 443
  14. Paliwoda, A., Generalized Method of Press-ure Drop and Tube Length Calculation with Boiling and Condensing Refrigerants within the Entire Zone of Saturation, Int. J. Refrig., 1989, 12, 314-322 https://doi.org/10.1016/0140-7007(89)90062-5
  15. Zivi, S. M., Estimation of Steady State Ste-am Void-Fraction by Means of Principle of Minimum Entropy Production, Trans ASME, 1964, Series C, 86, pp. 237-252
  16. Kays, W. M. and London, A. L., Compact Heat Exchanger, McGraw-Hill, 3rd ed. 1984