The Effects of Calcium-Phosphate Coated Xenogenic Bone and Type I Collagen for Bone Regeneration on the Calvarial Defects in Rabbits

Ca-P 박막 이종골과 제 1형 교원질이 토끼 두개골 결손부의 골재생에 미치는 영향

  • Kim, Chang-Han (Department of periodontology, College of Dentistry, Kyungpook National University) ;
  • Park, Jin-Woo (Department of periodontology, College of Dentistry, Kyungpook National University) ;
  • Lee, Jae-Mok (Department of periodontology, College of Dentistry, Kyungpook National University) ;
  • Suh, Jo-Young (Department of periodontology, College of Dentistry, Kyungpook National University)
  • 김창한 (경북대학교 치과대학 치주과학교실) ;
  • 박진우 (경북대학교 치과대학 치주과학교실) ;
  • 이재목 (경북대학교 치과대학 치주과학교실) ;
  • 서조영 (경북대학교 치과대학 치주과학교실)
  • Published : 2004.03.30

Abstract

The purpose of this present study evaluated the osseous response around Ca-P coated xenogenic bone and compared osteogenic potential of Ca-P coated xenogenic bone to that of combination with type I collagen derived from bovine tendon as a biocompatible binder to prevent migration of bone particle on the repair of calvarial defects in rabbits. To study the effects of Ca-P coated xenogenic bone and collagen on bone healing, four 5-mm-diameter skull defect were made in calvaria with trephine filled with an autogenous bone chip or Ca-P coated xenogenic bone or Ca-P coated xenogenic bone and type I collagen (1:1 mixture by volume) or left empty. The defects were evaluated histologically at 1, 2, 4 and 8 weeks following implantation. Ca-P coated xenogenic bone at the calvarial defects of rabbits showed osteoconductivity at the margin of defect in the early stage of bony healing, but no direct contact with new bone was observed. With time passed by, it was resorbed slowly and showed consistent inflammatory reaction. An additional use of type I collagen derived from bovine tendon improved clinical handling, but no new bone formation was observed histologically. Above all, autogenous bone graft showed most prominent healing in quantity and density of new bone formation. According to this study, the use of Ca-P coated xenogenic bone alone and combination with type I collagen did not showed effective healing in quantity and density of new bone formation.

골재생을 위해 사용되는 골이식재로 자가골, 동종골, 이종골 등이 있다. 자가골은 가장 예지성이 높은 골이식재이지만, 부가적인 수술, 환자의 동통과 불편, 채취하는 양의 제한, 비용의 증가 등의 단점이 있다. 따라서 많은 연구자들은 오랫동안 자가골을 대체할 골이식재 개발에 힘써왔고, 다양한 연구가 있었다. 소로부터 유래한 이종골은 천연 다공성의 골 무기질로서, 인간의 골의 구조와 유사하면서, 골 전도성이 있고, 생체 적합성이 뛰어나다고 보고되었다. 이에 최근에 개발된 Ca-P 박막이 이종골과 조작성을 용이하게 하기 위해 부가적으로 type I collagen을 혼합한 골이식재를 토끼 두개골 결손부에 매식하여 골형성 능력 및 주변 조직의 반응을 보고자 하였다. 총 16마리의 New Zealand white rabbits를 사용하였고, 두개골에 4부위의 결손부를 형성한 후, 다음과 같이 적용하였다. 이식재를 넣지 않은 군을 음성대조군으로, 자가골 분말을 이식한 군을 양성대조군으로, Ca-P 박막 탈단백 우골 분말을 이식한 군을 실험1군으로, Ca-P 박막 탈단백 우골 분말과 type I collagen을 같은 부피로 혼합하여 이식한 군을 실험2군으로 하였다. 1, 2, 4, 8주째 4마리씩 희생하여, H-E 염색과 Masson's trichrome 염색을 시행한 후, 광학현미경을 사용하여 조직학적으로 관찰하였다. 토끼 두개골 결손부에 이식한 Ca-P 박막 탈단백 우골은 골성회복초기에 골결손부 변연에서 골전도성을 보였지만, 완전한 골성회복을 이루지 못하였고, 신생골과 직접적인 유합을 보이지 않았다. 또, collagen의 부가적인 사용은 조작성은 가장 우수했으나, 조직소견상 신생골의 형성을 보이지는 않았다. 반면 자가골을 이식한 부위는 신생골 형성양과 밀도에 있어서 가장 우수한 결과를 보였다.

Keywords

References

  1. Burchadt H. The biology of bone graft repair. Clinical Orthopaedics and Related Research 1983;174:28-42
  2. Boyne PJ. Induction of bone repair by various bone grafting materials. Hard tissue growth, repair and remineralization. Ciba Foundation Symposium 1973;11:121-141
  3. Urist MR. Bone formation by autoinduction. Science 1965;150(698):893-9 https://doi.org/10.1126/science.150.3698.893
  4. Libin BM, Ward HL, Fishman L. Decalcified, lyophilized bone allografts for use in human periodontal defects. J Periodontol 1975;46(1):51-6 https://doi.org/10.1902/jop.1975.46.1.51
  5. Quintero G, Mellonig JT, Gambill VM, Pelleu GB Jr. A six-month clinical evaluation of decalcified freeze-dried bone allografts in periodontal osseous defects. J Periodontol 1982;53(12):726-30 https://doi.org/10.1902/jop.1982.53.12.726
  6. Mellonig JT. Decalcified freeze-dried bone allograft as an implant material in human periodontal defects. Int J Periodontics Restorative Dent 1984;4(6):40-55
  7. Cortellini P, Bowers GM. Periodontal regeneration of intrabony defects an evidence based treatment approach. Int J Periodontics Restorative Dent 1995;15(2):128-45.11
  8. Schallhorn RG, McClain PK. Combined osseous composite grafting, root conditioning, and guided tissue regeneration. Int J Periodontics Restorative Dent 1998;8(4):8-31
  9. Mellonig JT, Triplett RG. Guided tissue regeneration and endosseous dental implants. Int J Periodontics Restorative Dent 1993;13(2):108-19
  10. Cochran DL, Douglas HB. Augmentation of osseous tissue around nonsubmerged endosseous dental implants. Int J Periodontics Restorative Dent 1993;13:506-519
  11. Shanaman RH. A retrospective study of 237 sites treated consecutively with guided tissue regeneration. Int J Periodontics Restorative Dent 1994;14(4):292-301
  12. Pinholt EM, Haanaes HR, Roervik M, Donath K, Bang G. Alveolar ridge augmentation by osteoinductive materials in goats. Scand J Dent Res 1992;100(6):361-5
  13. Becker W, Lynch SE, Lekholm U, Becker BE, Caffesse R, Donath K, Sanchez R. A comparison of ePTFE membranes alone or in combination with platelet-derived growth factors and insulin-like growth factor-I or demineralized freeze-dried bone in promoting bone formation around immediate extraction socket implants. J Periodontol 1992;63(11):929-40 https://doi.org/10.1902/jop.1992.63.11.929
  14. Becker W, Schenk R, Higuchi K, Lekholm U, Becker BE. Variations in bone regeneration adjacent to implants augmented with barrier membranes alone, or with demineralized freeze-dried bone or autologous grafts: A study in dogs. Int J Oral Maxillofac Implants 1995;10:143-154
  15. Becker W, Urist MR, Tucker LM, Becker BE, Ochsenbein C. Human demineralized freeze-dried bone: Inadequate induced bone formation in athymic mice. A preliminary report. J Periodontol 1995;66:822-828 https://doi.org/10.1902/jop.1995.66.9.822
  16. Aspenberg P, Kalebo P, Albrektsson T. Rapid bone healing delayed by bone matrix implantation. Int J Oral Maxillofac Implants 1998;3:123-127
  17. Buser D, Bernard JP, Hofmann B, Lussi A, Mertler D, Schenk RK. Evaluation of bone filling materials in membrane-protected defects of the mandible. A histomorphometric study in miniature pigs. Clinical Oral Implants Research 1998;9:137-150 https://doi.org/10.1034/j.1600-0501.1998.090301.x
  18. Buck BE, Resnick L, Shah SM, Malinin TI. Human immunodeficiency virus cultured from bone. Implications for transplantation. Clin Orthop 1990;(251):249-53
  19. Bucholz RW, Carlton A, Holmes RE. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 1987;18(2):323-34
  20. Khavari F, Bajpai PK. Coralline-sulfate bone substitutes. Biomed Sci Instrum 1993;29:65-9
  21. Gogolewski S, Jovanovic M, Perren SM, Dillon JG, Hughes MK. Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly (3-hydroxybutyrate) (PHB), andpoly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). J Biomed Mater Res 1993;27(9):1135-48 https://doi.org/10.1002/jbm.820270904
  22. Froum SJ, Weinberg MA, Tarnow D. Comparison of bioactive glass synthetic bone graft particles and open debridement in the treatment of human periodontal defects. A clinical study. J Periodontol 1998;69(6):698-709 https://doi.org/10.1902/jop.1998.69.6.698
  23. Denissen HW, De Groot K, Makkes PC, Van den Hoof A, Klopper PJ. Tissue response to dense apatite implants in rats. J Biomed Mater Res 1980;14:713-721 https://doi.org/10.1002/jbm.820140603
  24. Cohen RE, Mullarky RH, Noble B, Comeau RL, Neiders ME. Phenotypic characterization of mononuclear cells following anorganic bovine bone implantation in rats. J Periodontol 1994;65(11):1008-15 https://doi.org/10.1902/jop.1994.65.11.1008
  25. Smiler DG, Johnson PW, Lozada JL, Misch C, Rosenlicht JL, Tatum OH Jr, Wagner JR. Sinus lift grafts and endosseous implants. Treatment of the atrophic posterior maxilla. Dent Clin North Am 1992;36(1):151-86
  26. Hurzeler MB, Kirsch A, Ackermann KL, Quinones CR. Reconstruction of the severely resorbed maxilla with dental implants in the augmented maxillary sinus: a 5-year clinical investigation. Int J Oral Maxillofac Implants 1996;11(4):466-75
  27. Cho. JS, Kim Jy, Chung CH, Yim SB. The comparison of the effects on the regeneration with xenografts on the furcation involvement in beagle dogs. The Journal of Korean Academy of Periodontology 2000;30:277-286
  28. Park TS, Lim SB, Chung CH, Kim JY. Histologic study on the effect of two types of bovine bone powder in extraction socket of beagle dogs. The Journal of Korean Academy of Periodontology 2000;30:527-538 https://doi.org/10.5051/jkape.2000.30.3.527
  29. Harvey WK, Pincock JL, Matukas VJ, Lemons JE. Evaluation of a subcutaneously implanted hydroxylapatite-avitene mixture in rabbits. J Oral Maxillofac Surg 1985;43(4):277-80 https://doi.org/10.1016/0278-2391(85)90287-3
  30. Gongloff RK, Montgomery CK. Experimental study of the use of collagen tubes for implantation of particulate hydroxylapatite. J Oral Maxillofac Surg 1985;43(11):845-9 https://doi.org/10.1016/0278-2391(85)90220-4
  31. Shen K, Gongloff RK. Collagen tube containers: an effective means of controlling particulate hydroxyapatite implants. J Prosthet Dent 1986;56(1):65-70 https://doi.org/10.1016/0022-3913(86)90285-4
  32. Frame, J. W. A convenient animal model for testing bone substitute materials. J Oral Surg 1980;38:176
  33. Dodde R, Yavuzer R, Bier UC, Alkadri A, Jackson IT. Spontaneous bone healing in the rabbit. J Craniofac Surg 2000;11(4):346-9 https://doi.org/10.1097/00001665-200011040-00013
  34. Jensen SS, Aaboe M, Pinholt EM, Hjorting-Hansen E, Melsen F, Ruyter IE. Tissue reaction and material characteristics of four bone substitutes. Int J Oral Maxillofac Implants 1996;11(1):55-66
  35. Slotte C, Lundgren D. Augmentation of calvarial tissue using non-permeable silicone domes and bovine bone mineral. An experimental study in the rat. Clin Oral Implants Res 1999;10(6):468-76 https://doi.org/10.1034/j.1600-0501.1999.100605.x
  36. Klinge B, Alberius P, Isaksson S, Jonsson J. Osseous response to implanted natural bone mineral and synthetic hydroxylapatite ceramic in the repair of experimental skull bone defects. J Oral Maxillofac Surg 1992;50(3):241-9 https://doi.org/10.1016/0278-2391(92)90320-Y
  37. Ripamonti U, Schnitzler CM, Cleaton-Jones PC. Bone induction in a composite allogeneic bone/alloplastic implant. J Oral Maxillofac Surg 1989;47(9):963-9 https://doi.org/10.1016/0278-2391(89)90381-9
  38. Nathan RM, Bentz H, Armstrong RM, Piez KA, Smestad TL, Ellingsworth LR, McPherson JM, Seyedin SM. Osteogenesis in rats with an inductive bovine composite. J Orthop Res 1988;6(3):324-34 https://doi.org/10.1002/jor.1100060304
  39. Uretzky G, Appelbaum J, Sela J. Inhibition of the inductive activity of demineralized bone matrix by different percutaneous implants. Biomaterials 1988;9(2):195-7 https://doi.org/10.1016/0142-9612(88)90122-6
  40. Skoglund A, Hising P, and Young C. A clinical and histologic examination in humans of the osseous response to implanted natural bone mineral. Int J Oral Maxillofac Implants 1997;12:194-199
  41. Schlegel AK, Donath K. BIO-OSS-a resorbable bone substitute? J Long Term Eff Med Implants 1998;8(3-4):201-9
  42. Spira M, Liu B, Xu Z. et al. Human amnion collagen for soft tissue augmentation-biomechanical characterizations and animal observations. J Biomed Mater Res 1994;28:91-96 https://doi.org/10.1002/jbm.820280112
  43. Matui R, Okura N, Osaki KI. et al. histological evaluation of skin reconstruction using artificial dermis. Biomaterials 1996;17: 995-1000 https://doi.org/10.1016/0142-9612(96)84674-6
  44. Doillon CJ, Whyne CF, Brandwein S, Silver FH. Collagen-based wound dressings: control of the pore structure and morphology. J Biomed Mater Res 1986;20(8):1219-28 https://doi.org/10.1002/jbm.820200811
  45. DeLustro F, Dasch J, Keefe J, Ellingsworth L. Immune responses to allogeneic and xenogeneic implants of collagen and collagen derivatives. Clin Orthop 1990;(260):263-79
  46. Thaller SR, Kim S, Tesluk H, Kawamoto H. The split calvarial bone graft donor site: the effects of surgical and hydroxyapatite impregnated with collagen. Ann Plast Surg 1990;25(6):435-9 https://doi.org/10.1097/00000637-199012000-00002
  47. Tsai CH, Chou MY, Jonas M, Tien YT, Chi EY. A composite graft material containing bone particles and collagen in osteoinduction in mouse. J Biomed Mater Res 2002;63(1):65-70 https://doi.org/10.1002/jbm.10089
  48. Bell R, Beirne OR. Effect of hydroxylapatite, tricalcium phosphate, and collagen on the healing of defects in the rat mandible. J Oral Maxillofac Surg 1988l;46(7):589-94 https://doi.org/10.1016/0278-2391(88)90150-4
  49. Schendel S, Bresnick S, Cholon A. Preliminary report: a ceramic containing crosslinked collagen as a new cranial onlay and inlay material. Ann Plast Surg 1997;38(2):158-62 https://doi.org/10.1097/00000637-199702000-00010
  50. Levy P, Nevins A, LaPorta R. Healing potential of surgically-induced periodontal osseous defects in animals using mineralized collagen gel xenografts. J Periodontol 1981;52(6):303-6 https://doi.org/10.1902/jop.1981.52.6.303
  51. Urist MR, Silverman BF, Buring K, Dubuc FL, Rosenberg JM. The bone induction principle. Clin Orthop 1967;53:243-83
  52. Sela J, Applebaum J, Uretzky G. Osteogenesis induced by bone matrix is inhibited by inflammation. Biomater Med Devices Artif Organs 1986;14(3-4):227-37 https://doi.org/10.3109/10731198609117544
  53. Blumenthal NM, Alves ME. The use of demineralized freeze-dried bone-glycoprotein matrix grafts in treating baboon periodontal infrabony defects. Int J Periodontics Restorative Dent 2000;20(1):61-9
  54. Minabe M, Kodama T, Kogou T, Tamura T, Hori T, Watanabe Y, Miyata T. Different cross-linked types of collagen implanted in rat palatal gingiva. J Periodontol 1989;60(1):35-43 https://doi.org/10.1902/jop.1989.60.1.35
  55. Brunsvold MA, Mellonig JT. Bone grafts and periodontal regeneration. Periodontol 2000 1993;1:80-91 https://doi.org/10.1111/j.1600-0757.1993.tb00209.x