References
- Banfield, S.J. and Flory, J.F. (1995), "Computer modelling of large high-performance fiber rope properties", Proc. of Oceans '95, San Diego.
- Banfield, S.J., Hearle, J.W.S., Leech, C.M., Tebay, R. and Lawrence, C.A. (2003), "Fibre Rope Modeller (FRM): A CAD program for the performance prediction of advanced cords and ropes under complex loading environments", http://www.tensiontech.com/papers/papers/FRM_2/rope_CAD.pdf, Tension Technology International.
- Conway, T.A. and Costello, G.A. (1993), "Viscoelastic response of a simple strand", Int. J. Solids Struct., 30(4), 553-567. https://doi.org/10.1016/0020-7683(93)90187-C
- Costello, G.A. (1997), Theory of Wire Rope, 2nd ed. New York: Springer-Verlag.
- European Prestandard (2002), prEN 1993-1-11:20xx "Design of structures with tension components made of steel", CEN, Brussels.
- Evans, J.J., Ridge, I.M. and Chaplin, C.R. (2001), "Wire strain variations in normal and overloaded ropes in tension-tension fatigue and their effect on endurance", The Journal of Strain Analysis for Engineering Design, 36(2), 219-230. https://doi.org/10.1243/0309324011512766
- Guimaraes, G.B. and Burgoyne, C.J. (1992), "Creep behaviour of a parallel-lay aramid rope", J. Mater. Sci., 27(8), 2473-2489. https://doi.org/10.1007/BF01105061
- Holickova, L. (1997), "Experimental and theoretical analysis of creep and relaxation of cable structural elements", Ph.D. Thesis, Technical University of Kosice.
- Huang, X.L. and Vinogradov, O.G. (1996), "Extension of a cable in the presence of dry friction", Struct. Eng. Mech., An Int. J., 4(3), 313-329. https://doi.org/10.12989/sem.1996.4.3.313
- Husiar, B. and Switka, R. (1986), "Creep and relaxation in net structures", Proc. of the IASS Symposium on Membrane Structures and Space Frames, Osaka.
- Jiang, W.G., Henshall, J.L. and Walton, J.M. (2000), "A concise finite element model for three-layered straight wire rope strand", Int. J. Mech. Sci., 42(1), 63-86. https://doi.org/10.1016/S0020-7403(98)00111-8
- Kaci, S. (1995), "Experimental study of mechanical behavior of composite cables for prestress", J. Eng. Mech., 121(6), 709-716. https://doi.org/10.1061/(ASCE)0733-9399(1995)121:6(709)
- Kmet, S. (1989), "Cable strain as a time and stress function under nonlinear creep", J. Civil Eng., 37(10), 534-540.
- Kmet, S. (1994), "Rheology of prestressed cable structures", Proc. of the Int. Conf. on Civil and Structural Engineering Computing, Civil-Comp 1994, Advanced in Finite Element Techniques, Edinburgh.
- Kmet, S. (2004), "Non-linear rheology of tension structural element under single and variable loading history part I. Theoretical derivations", Struct. Eng. Mech., An Int. J., 18(5), 564-588.
- Kmet, S. and Holickova, L. (2000), "Creep of high-strength initially stretched steel ropes", Acta Mechanica Slovaca, 4(3), 47-56.
- Labrosse, M., Nawrocki, A. and Conway, T. (2000), "Frictional dissipation in axially loaded simple straight strands", J. Eng. Mech., 126(6), 641-646. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:6(641)
- Leech, C.M. (1987), "Theoretical and numerical methods for the modelling of synthetic ropes", Communications in Applied Numerical Methods, 3(2), 214-223.
- Leech, C.M., Hearle, J.W.S., Overington, M.S. and Banfield, S.J. (1993), "Modelling tension and torque properties of fibre ropes and splices", Proc. of the Third (1993) Int. Offshore and Polar Engineering Conf., Singapore.
- Leech, C.M. (2002), "The modelling of friction in polymer fibre ropes", Int. J. Mech. Sci., 44(3), 621-643. https://doi.org/10.1016/S0020-7403(01)00095-9
- Lefik, M. and Schrefler, B.A. (2002), "Artificial neural network for parameter identifications for an elasto-plastic model of superconducting cable under cyclic loading", Comput. Struct., 80(22), 1699-1713. https://doi.org/10.1016/S0045-7949(02)00162-1
- Nakai, M., Sato, S., Aida, T. and Tomioka, H. (1975), "On the creep and the relaxation of spiral ropes", Bulletin of the JSME, 18(125), 1308-1314. https://doi.org/10.1299/jsme1958.18.1308
- Nawrocki, A. and Labrosse, M. (2000), "A finite element model for simple straight wire rope strands", Comput. Struct., 77(4), 345-359. https://doi.org/10.1016/S0045-7949(00)00026-2
- Raoof, M. and Kraincanic, I. (1998), "Prediction of coupled axial/torsional stiffness coefficients of locked-coil ropes", Comput. Struct., 69(3), 305-319. https://doi.org/10.1016/S0045-7949(98)00128-X
- Roshan Fekr, M., McGlure, G. and Farzaneh, M. (1999), "Application of ADINA to stress analysis of an optical ground wire", Comput. Struct., 72(1-3), 301-316. https://doi.org/10.1016/S0045-7949(99)00037-1
Cited by
- Vibrations of an aramid anchor cable subjected to turbulent wind vol.72, 2014, https://doi.org/10.1016/j.advengsoft.2013.08.004
- Time-dependent analysis of cable nets using a modified nonlinear force-density method and creep theory vol.148, 2015, https://doi.org/10.1016/j.compstruc.2014.11.004
- An innovative approach for numerical simulation of stress relaxation of structural cables vol.131-132, 2017, https://doi.org/10.1016/j.ijmecsci.2017.08.011
- Time-Dependent Analysis of Prestressed Cable Nets vol.142, pp.7, 2016, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001465
- Artificial Neural Network for Creep Behaviour Predictions of a Parallel-lay Aramid Rope Under Varying Stresses vol.47, 2011, https://doi.org/10.1111/j.1475-1305.2010.00747.x
- Time-dependent analysis of cable domes using a modified dynamic relaxation method and creep theory vol.125, 2013, https://doi.org/10.1016/j.compstruc.2013.04.019
- Finite element simulation of creep of spiral strands vol.117, 2016, https://doi.org/10.1016/j.engstruct.2016.02.053
- Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect vol.22, pp.2, 2006, https://doi.org/10.12989/sem.2006.22.2.197
- Time-dependent analysis of cable trusses -Part I. Closed-form computational model vol.38, pp.2, 2004, https://doi.org/10.12989/sem.2011.38.2.157