References
- Anderssen, R.S. and Loy, R.J. (2002), "Rheological implications of completely monotone fading memory", Journal of Rheology, 46(6), 1459-1472. https://doi.org/10.1122/1.1514203
- Banfield, S.J. and Flory, J.F. (1995), "Computer modelling of large high-performance fiber rope properties", Proc. of Oceans '95, San Diego.
- Banfield, S.J., Hearle, J.W.S., Leech, C.M., Tebay, R. and Lawrence, C.A. (2003), "Fibre Rope Modeller (FRM): A CAD program for the performance prediction of advanced cords and ropes under complex loading environments", http://www.tensiontech.com/papers/papers/FRM_2/rope_CAD.pdf, Tension Technology International.
- Beijer, J.G.J. and Spoormaker, J.L. (2002), "Solution strategies for FEM analysis with nonlinear viscoelastic polymers", Comput. Struct., 80(14-15), 1213-1229. https://doi.org/10.1016/S0045-7949(02)00089-5
- Bonet, J. (2001), "Large strain viscoelastic constitutive models", Int. J. Solids Struct., 38(17), 2953-2968. https://doi.org/10.1016/S0020-7683(00)00215-8
- Cheung, J.B. (1970), "Nonlinear viscoelastic stress analysis of blood vessels", Ph.D. Thesis, University of Minnesota.
- Conway, T.A. and Costello, G.A. (1993), "Viscoelastic response of a simple strand", Int. J. Solids Struct., 30(4), 553-567. https://doi.org/10.1016/0020-7683(93)90187-C
- Costello, G.A. (1997), Theory of Wire Rope, 2nd ed. New York: Springer-Verlag.
- Drozdov, A.D. (1998), "A model for the nonlinear viscoelastic response in polymers at finite strains", Int. J. Solids Struct., 35(18), 2315-2347. https://doi.org/10.1016/S0020-7683(97)00184-4
- Evans, J.J., Ridge, I.M. and Chaplin, C.R. (2001), "Wire strain variations in normal and overloaded ropes in tension-tension fatigue and their effect on endurance", The Journal of Strain Analysis for Engineering Design, 36(2), 219-230. https://doi.org/10.1243/0309324011512766
- Fafard, M., Boudjelal, M.T., Bissonnette, B. and Cloutier, A. (2001), "Three-dimensional viscoelastic model with nonconstant coefficients", J. Eng. Mech., 127(8), 808-815. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:8(808)
- Findley, W.N. and Onaran, K. (1968), "Product form of kernel functions for non-linear viscoelasticity of PVC under constant rate stressing", Trans. Society of Rheology, 12(2), 217-231. https://doi.org/10.1122/1.549107
- Findley, W.N., Lai, J.S. and Onaran, K. (1976), Creep and Relaxation of Nonlinear Viscoelastic Materials, Applied Mathematics and Mechanics, North − Holland Publishing Company, New York.
- Frank, G.J. and Brockman, R.A. (2001), "A viscoelastic − viscoplastic constitutive model for glassy polymers", Int. J. Solids Struct., 38(30-31), 5149-5164. https://doi.org/10.1016/S0020-7683(00)00339-5
- Gottenberg, W.G., Bird, J.O. and Agrawall, G.L. (1969), "An experimental study of a non-linear viscoelastic solid in uniaxial tension", Trans. ASME, J. Appl. Mech., 36(3), 558-572. https://doi.org/10.1115/1.3564717
- Green, A.E., Rivlin, R.S. and Spencer, A.J.M. (1959), "The mechanics of nonlinear materials with memory, Part II", Archive for Rational Mechanics and Analysis, 3(1), 82-96. https://doi.org/10.1007/BF00284166
- Green, A.E. and Rivlin, R.S. (1960), "The mechanics of nonlinear materials with memory, Part III", Archive for Rational Mechanics and Analysis, 4(2), 387-398.
- Guimaraes, G.B. and Burgoyne, C.J. (1992), "Creep behaviour of a parallel-lay aramid rope", J. Mater. Sci., 27(8), 2473-2489. https://doi.org/10.1007/BF01105061
- Haitian, Y. and Yan, L. (2003), "A combined approach of EFGM and precise algorithm in time domain solving viscoelasticity problems", Int. J. Solids Struct., 40(3), 701-714. https://doi.org/10.1016/S0020-7683(02)00614-5
- Hartmann, S. (2002), "Computation in finite-strain viscoelasticity: Finite elements based on the interpretation as differential − Algebraic equations", Comput. Meth. Appl. Mech. Eng., 191(13-14), 1439-1470. https://doi.org/10.1016/S0045-7825(01)00332-2
- Huang, X.L. and Vinogradov, O.G. (1996), "Extension of a cable in the presence of dry friction", Struct. Eng. Mech., An Int. J., 4(3), 313-329. https://doi.org/10.12989/sem.1996.4.3.313
- Husiar, B. and Switka, R. (1986), "Creep and relaxation in net structures", Proc. of the IASS Symposium on Membrane Structures and Space Frames, Osaka.
- Jiang, W.G., Henshall, J.L. and Walton, J.M. (2000), "A concise finite element model for three-layered straight wire rope strand", Int. J. Mech. Sci., 42(1), 63-86. https://doi.org/10.1016/S0020-7403(98)00111-8
- Jung, G.D. and Youn, S.K. (1999), "A nonlinear viscoelastic constitutive model of solid propellant", Int. J. Solids Struct., 36(25), 3755-3777. https://doi.org/10.1016/S0020-7683(98)00175-9
- Kaliske, M., Nasdala, L. and Rothert, H. (2001), "On damage modelling for elastic and viscoelastic materials at large strain", Comput. Struct., 79(22-25), 2133-2141. https://doi.org/10.1016/S0045-7949(01)00061-X
- Kmet, S. (1989), "Cable strain as a time and stress function under nonlinear creep", J. Civil Eng., 37(10), 534-540.
- Kmet, S. (1994), "Rheology of prestressed cable structures", Proc. of the Int. Conf. on Civil and Structural Engineering Computing, Civil-Comp 1994, Advanced in Finite Element Techniques, Edinburgh.
- Kmet, S. and Holickova, L. (2000), "Creep of high-strength initially stretched steel ropes", Acta Mechanica Slovaca, 4(3), 47-56.
- Kwon, Y. and Soo Cho, K. (2001), "Time-strain nonseparability in viscoelastic constitutive equations", Journal of Rheology, 45(6), 1441-1452. https://doi.org/10.1122/1.1413505
- Labrosse, M., Nawrocki, A. and Conway, T. (2000), "Frictional dissipation in axially loaded simple straight strands", J. Eng. Mech., 126(6), 641-646. https://doi.org/10.1061/(ASCE)0733-9399(2000)126:6(641)
- Leech, C.M. (1987), "Theoretical and numerical methods for the modelling of synthetic ropes", Communications in Applied Numerical Methods, 3(2), 214-223.
- Leech, C.M., Hearle, J.W.S., Overington, M.S. and Banfield, S.J. (1993), "Modelling tension and torque properties of fibre ropes and splices", Proc. of the Third (1993) Int. Offshore and Polar Engineering Conf., Singapore.
- Leech, C.M. (2002), "The modelling of friction in polymer fibre ropes", Int. J. Mech. Sci., 44(3), 621-643. https://doi.org/10.1016/S0020-7403(01)00095-9
- Lefik, M. and Schrefler, B.A. (2002), "Artificial neural network for parameter identifications for an elasto-plastic model of superconducting cable under cyclic loading", Comput. Struct., 80(22), 1699-1713. https://doi.org/10.1016/S0045-7949(02)00162-1
- Meo, S., Boukamel, A. and Debordes, O. (2002), "Analysis of a thermoviscoelastic model in large strain", Comput. Struct., 80(27-30), 2085-2098. https://doi.org/10.1016/S0045-7949(02)00246-8
- Meskuita, A.D. and Coda, H.B. (2003), "New methodology for treatment of two dimensional viscoelastic coupling problems", Comput. Meth. Appl. Mech. Eng., 192(16-18), 1911-1927. https://doi.org/10.1016/S0045-7825(02)00598-4
- Nakada, O. (1960), "Theory of non-linear responses", Journal of the Physical Society of Japan, 15, 2280-2296. https://doi.org/10.1143/JPSJ.15.2280
- Nakai, M., Sato, S., Aida, T. and Tomioka, H. (1975), "On the creep and the relaxation of spiral ropes", Bulletin of the JSME, 18(125), 1308-1314. https://doi.org/10.1299/jsme1958.18.1308
- Nawrocki, A. and Labrosse, M. (2000), "A finite element model for simple straight wire rope strands", Comput. Struct., 77(4), 345-359. https://doi.org/10.1016/S0045-7949(00)00026-2
- Onaran, K. and Findley, W.N. (1965), "Combined stress creep experiments on a nonlinear viscoelastic material to determine the kernel functions for a multiple integral representation of creep", Transactions of the Society of Rheology, 9(4), 299-317. https://doi.org/10.1122/1.549002
- Park, S.W. and Schapery, R.A. (1999), "Methods of interconversion between linear viscoelastic material functions. Part I − A numerical method based on Prony series", Int. J. Solids Struct., 36(11), 1653-1675. https://doi.org/10.1016/S0020-7683(98)00055-9
- Patlashenko, I., Givoli, D. and Barbone, P. (2001), "Time-stepping schemes for systems of Volterra integrodifferential equations", Comput. Meth. Appl. Mech. Eng., 190(43-44), 5691-5718. https://doi.org/10.1016/S0045-7825(01)00192-X
- Pipkin, A.C. (1964), "Small finite deformations of viscoelastic solids", Review of Modern Physics, 36(6), 1034- 1046. https://doi.org/10.1103/RevModPhys.36.1034
- Ponter, R.S. and Boulbibane, M. (2002), "Minimum theorems and the linear matching method for bodies in a cyclic state of creep", European Journal of Mechanics - A/Solids, 21(6), 915-925. https://doi.org/10.1016/S0997-7538(02)01245-7
- Poon, H. and Fouad Ahmad, M. (1999), "A finite element constitutive update scheme for anisotropic viscoelastic solids exhibiting non-linearity of the Schapery type", Int. J. Numer. Meth. Eng., 46(12), 2027-2041. https://doi.org/10.1002/(SICI)1097-0207(19991230)46:12<2027::AID-NME575>3.0.CO;2-5
- Quintanilla, R. (2004), "Comparison arguments and decay estimates in non-linear viscoelasticity", Int. J. Non- Linear Mechanics, 39(1), 55-61. https://doi.org/10.1016/S0020-7462(02)00127-0
- Raoof, M. and Kraincanic, I. (1998), "Prediction of coupled axial/torsional stiffness coefficients of locked-coil ropes", Comput. Struct., 69(3), 305-319. https://doi.org/10.1016/S0045-7949(98)00128-X
- Reese, S. and Govindjee, S. (1998), "A theory of finite viscoelasticity and numerical aspects", Int. J. Solids Struct., 35(26-27), 3455-3482. https://doi.org/10.1016/S0020-7683(97)00217-5
- Roshan Fekr, M., McGlure, G. and Farzaneh, M. (1999), "Application of ADINA to stress analysis of an optical ground wire", Comput. Struct., 72(1-3), 301-316. https://doi.org/10.1016/S0045-7949(99)00037-1
- Schapery, R.A. (2000), "Nonlinear viscoelastic solids", Int. J. Solids Struct., 37(1-2), 359-366. https://doi.org/10.1016/S0020-7683(99)00099-2
- Schapery, R.A. and Park, S.W. (1999), "Methods of interconversion between linear viscoelastic material functions. Part II − An approximate analytical method", Int. J. Solids Struct., 36(11), 1677-1699. https://doi.org/10.1016/S0020-7683(98)00060-2
- Schreyer, H.L. (2002), "On time integration of viscoplastic constitutive models suitable for creep", Int. J. Numer. Meth. Eng., 53(3), 637-652. https://doi.org/10.1002/nme.293
- Sobotka, Z. (1984), Rheology of Materials and Engineering Structures, Academia, Prague.
- Wineman, A., Van Dyke, T. and Shixiang, S. (1998), "A nonlinear viscoelastic model for one dimensional response of elastomeric bushings", Int. J. Mech. Sci., 40(12), 1295-1305. https://doi.org/10.1016/S0020-7403(98)00023-X
- Zheng, S.F. and Weng, G.J. (2002), "A new constitutive equation for the long-term creep of polymers based on physical aging", European Journal of Mechanics - A/Solids, 21(3), 411-421. https://doi.org/10.1016/S0997-7538(02)01215-9
Cited by
- Time-Dependent Analysis of Prestressed Cable Nets vol.142, pp.7, 2016, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001465
- Finite element simulation of creep of spiral strands vol.117, 2016, https://doi.org/10.1016/j.engstruct.2016.02.053
- Time-dependent analysis of cable nets using a modified nonlinear force-density method and creep theory vol.148, 2015, https://doi.org/10.1016/j.compstruc.2014.11.004
- Vibrations of an aramid anchor cable subjected to turbulent wind vol.72, 2014, https://doi.org/10.1016/j.advengsoft.2013.08.004
- Time-dependent analysis of cable domes using a modified dynamic relaxation method and creep theory vol.125, 2013, https://doi.org/10.1016/j.compstruc.2013.04.019
- Artificial Neural Network for Creep Behaviour Predictions of a Parallel-lay Aramid Rope Under Varying Stresses vol.47, 2011, https://doi.org/10.1111/j.1475-1305.2010.00747.x
- Time-dependent analysis of cable trusses -Part I. Closed-form computational model vol.38, pp.2, 2004, https://doi.org/10.12989/sem.2011.38.2.157