Mycorrhizal Root Infection and Growth of Cucumber and Tomato Plants by the Inoculated with Glomus sp. In solid Medium Culture

균근균 Glomus sp. 접종에 따른 고형배지경 오이와 방울토마토의 균근 형성과 생육

  • Cho, Ja-Yong (Department of Medicinal Resources and Horticulture Development, Namdo Provincial College of Jeonnam) ;
  • Kim, Young-Ju (Division of Environmental and Agricultural Science, Sunchon National University) ;
  • Jin, Seo-Young (Division of Environmental and Agricultural Science, Sunchon National University) ;
  • Kang, Sung-Gu (Division of Environmental and Agricultural Science, Sunchon National University) ;
  • Kim, Hong-Lim (Division of Horticultural Environment, National Horticultural Research Institute, Rural Development Administration) ;
  • Sohn, Bo-Kyoon (Division of Environmental and Agricultural Science, Sunchon National University)
  • 조자용 (남도대학 약용자원원예개발과) ;
  • 김영주 (순천대학교 환경농업과학부) ;
  • 진서영 (순천대학교 환경농업과학부) ;
  • 강성구 (순천대학교 환경농업과학부) ;
  • 김홍림 (농촌진흥청 원예연구소 원예환경과) ;
  • 손보균 (순천대학교 환경농업과학부)
  • Received : 2004.05.20
  • Accepted : 2004.07.02
  • Published : 2004.10.30

Abstract

This study was conducted to compare the effects of arbuscular mycorrhizal fungi (AMF) on the growth and fruit yield of hydroponically grown cucumber and tomato plants in solid medium culture. Mycorrhizal fungus Glomus sp. was collected from plastic film house soils of cucumber and tomato and inoculated to the experimental crops at the time of seeding and transplanting. Root infection of cucumber and tomato plants by AMF was more significantly increased when the AMF was inoculated at seeding stage than at transplanting stage. In the infected roots of cucumber and tomato, mycorrhizal hyphae was easily observed but vesicle and arbuscule were rare. Overall plant growth was increased with AMF inoculation and the growth was higher when AMF was inoculated at seeding stage. Fresh weight of each fruit of cucumber and tomato and sugar content in tomato fruits were significantly increased with AMF inoculation at seeding stage. The AMF inoculation also increased fruit yields of cucumber and tomato.

오이와 방울토마토에 Glomus sp.를 종자파종과 고형배지경에 정식시 각각 접종하여 생장과 수량반응 및 균근 감염 양상 등을 비교 검토하였다. 오이와 방울토마토의 초장, 엽수, 엽면적 및 건물중 등의 전반적인 생장은 무접종 < 정식시 균근균 접종 < 파종시 균근균 접종의 순으로 양호하였으며, 과실수량반응은 종자파종시에 균근균을 접종할 경우 과실의 생체중이 가장 높게 나타났고, 과실의 당도도 증가하였다. 균근감염은 오이와 방울토마토 모두 주로 균사에 의하여 이루어 졌고. vesicle와 arbuscule에 의한 감염은 극히 적었다. 뿌리체내 균근균 감염율은 종자파종시 균근균 접종원 처리의 경우가 정식시에 균근균 접종원을 처리한 경우보다 높았다. 균근균 접종에 따른 과실 수확을 보면 오이의 경우 주당 과실수가 증가하였고, 토마토의 경우 주당 과실의 수확 중량이 증가하였다.

Keywords

References

  1. Abbott, L. K., and A. D. Robson. 1984. The effect of mycorrhizae on plant growth. p. 113-130. In S. L. Powell and D. J. Bagyarai (ed.) VA mycorrhiza. CRC Press, Boca Raton, Florida, USA
  2. Adamson, R. M., and E. F. Maas. 1981. Soilless culture of seedless greenhouse cucumbers and sequence cropping. Agriculture Canada Publication 1725/E. Ottawa, Ontario, Canada
  3. Bearden, B. N. 2001. Influence of arbuscular mycorrhizal fungi on soil structure and soil water characteristics of vertisoils. Plant Soil 229:245-258 https://doi.org/10.1023/A:1004835328943
  4. Bianciotto, V., and P. Bonfante. 2002. Arbuscular mycorrhizal fungi: a specialised niche for rhizospheric and endocellular bacteria. 81:365-371 https://doi.org/10.1023/A:1020544919072
  5. Brady, N. C. 1984. The nature and properties of soils. 9th ed. Macmillan Publishing Co., New York, USA
  6. Bryla, D. R., and R. T. Koide. 1990. Role of mycorrhizal infection in the growth and reproduction of wild vs. cultivated plants. II. Eight wild accessions and two cultivars of Lycopersicon esculentum Mill. Oecologia 84:82-92 https://doi.org/10.1007/BF00665599
  7. Conway, C., and D. J. Bagyaraj. 1984. The effect of VA mycorrhizae on plant growth. p. 120-130. In C. L. Powell and D. J. Bagyaraj (ed.) VA mycorrhiza. CRC Press, Boca Raton, Florida, USA
  8. Davies, F. T., J. R. Potter, and R. G. Linderman. 1992. Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. 139:289-294 https://doi.org/10.1016/S0176-1617(11)80339-1
  9. Fredeen, A. L., I. M. Rao, and N. Terry. 1989. Influence of phosphorus nutrition on growth and carbon partitioning in Glycin max. Plant Physiol. 89:225-230 https://doi.org/10.1104/pp.89.1.225
  10. Galleguillos, C., C. Aguirre., J. M. Barea, and R. Azcon. 2000. Growth promoting effect of two Sinorhizobium meliloti strains (a wild type and its genetically modified derivative) on a non-legume plant species in specific interaction with two arbuscular mycorrhizal fungi. Plant Sci. 159:57-63 https://doi.org/10.1016/S0168-9452(00)00321-6
  11. Gianinazzi-Pearson, V., and S. Gianinazzi. 1983. The physiology of vesicular-arbuscular mycorrhizal roots. Plant Soil 71:197-209 https://doi.org/10.1007/BF02182655
  12. Graham, J. H., R. G. Linderman, and J. A. Menge. 1982. Development of external hyphae by different isolates of mycorrhizal Glomus sp. in relation to root colonization and growth of Troyer citrange. New Phytol. 91:183-189 https://doi.org/10.1111/j.1469-8137.1982.tb03304.x
  13. Hayman, D. S. 1983. The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can. J. Bot. 61:944-963 https://doi.org/10.1139/b83-105
  14. Koch, M., Z. Tanami., H. Bodani, S. Wininger, and Y. Kapulnik. 1997. Field application of vesicular-arbuscular mycorrhizal fungi improved garlic yield in disinfected soil. Mycorrhiza 7:47-50 https://doi.org/10.1007/s005720050162
  15. Kormanik, P. P., W. C. Bryan, and R. C. Schultz. 1977. The role of mycorrhizae in plant growth and development. p. 10. In Physiology of root-micro organisms associations. Proc. Symp. S. Sect. Amer. Soc. Plant Physiol. Feb. 1997. Atlanta, Georgia, USA
  16. Levy, Y., and J. Kridun. 1979. Effect of vesicular-arbuscular mycorrhiza in citrus jambhir water relations. New Phytol. 85:25-32 https://doi.org/10.1111/j.1469-8137.1980.tb04444.x
  17. Littlefield, L. J. 1966. Translocation of phosphorus-32 in sporophores of Collybia velutipes. Physiol. Plantarum 19:264-270 https://doi.org/10.1111/j.1399-3054.1966.tb07016.x
  18. Medina, A., A. Probanza., F. J. Gutierrez Mañero, and R. Azcón. 2003. Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl. Soil Ecol. 22:15-28 https://doi.org/10.1016/S0929-1393(02)00112-9
  19. Moyhuddin, M. 1990. Greenhouse vegetable production guide, 1990-91, for commercial growers. Alberta Agriculture Agdex 250/15-1. Alberta Agriculture, Edmonton, Alberta, Canada
  20. Paul, E. A., and R. M. N. Ducey. 1981. Carbon flow in plant microbial associations. Science 213:473-474 https://doi.org/10.1126/science.213.4506.473
  21. Phillips, J. M., and D. S. Hayman. 1970. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. 55:158-160 https://doi.org/10.1016/S0007-1536(70)80110-3
  22. Raven, P. H., R. F. Evert, and N. Terry. 1990. Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet. 92:29-36 https://doi.org/10.1104/pp.92.1.29
  23. Read, D. J., H. K. Koucheki, and J. Hodgson. 1976. Vesicular-arbuscular mycorrhiza in native system. 77:641-653 https://doi.org/10.1111/j.1469-8137.1976.tb04657.x
  24. Roorda van Eysinga, J. P. N. L., and K. W. Smilde. 1981. Nutritional disorders in glasshouse tomatoes, cucumbers, and lettuce. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands
  25. Rosendahl, C. N., and S. Rosendahl. 1991. Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber (Cucumis sativus L.) to salt stress. Environ. Exp. Bot. 31:313-318 https://doi.org/10.1016/0098-8472(91)90055-S
  26. Rufty, T. W. Jr., C. T. MacKown, and D. W. Israel. 1990. Phosphorus stress effects on assimilation of nitrate. 94:328-333 https://doi.org/10.1104/pp.94.1.328
  27. Salisbury, F. B., and C. W. Ross. 1985. Plant Physiology. 3rd ed. Wadsworth Publishing Co., California, USA
  28. Schubert, A., and D. S. Hayman. 1986. Plant growth responses to VAM. XVI. Effectiveness of different endophytes at different levels of soil phosphate. New Phytol. 103:79-90 https://doi.org/10.1111/j.1469-8137.1986.tb00598.x
  29. Smith, S. E., and D. J. Read. 1997. Mycorrhizal symbiosis. Academic Press, New York. USA
  30. Subramanian, K. S. 1997. Nutritional, growth, and reproductive responses of maize (Zea mays L.) to arbuscular mycorrhizal inoculation during and after drought stress at tasselling. Mycorrhiza 7:25-32 https://doi.org/10.1007/s005720050159
  31. Thomson, B. D., A. D. Robson, and L. K. Abbott. 1990. Mycorrhizas formed by Gigaspora calospora and Glomus fasciculatum on subterranean clover in relation to soluble carbohydrate concentration in roots. New Phytol. 114:217-225 https://doi.org/10.1111/j.1469-8137.1990.tb00393.x
  32. Waechter-Kristensen, B., S. Khalil, P. Sundin, J. E. Englund, U. E. Gertsson, and P. Jensen. 1996. Study of the microbial dynamics in the root environment of closed, hydroponic cultivation systems for tomato using phospholipid fatty acid profiles. Acta Hortic. 440:193-198